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Summary

This paper presents simple models for flow and the PIG dynamics when it passes
through a 90° curved section of pipeline. The simulation has been done with two different
operational boundary conditions. The solution for non-linear hyperbolic partial equations for
flow is given by using MOC. The Runge-Kuta method is used to solve the initial condition
equation for flow and the PIG dynamics equation. The simulation results show that the
proposed model and solution can be used for estimating the PIG dynamics when the pig runs
in the pipeline including curved section.

Abstract — In this paper, dynamic modeling and its analysis for the PIG flow through 90°
curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is
derived by using Lagrange equation under assumption that it passes through 3 different
sections in the curved pipeline such that it moves into, inside and out of the curved section.
The downstream and up stream flow dynamics including the curved sections are solved using
MOC. The effectiveness of the derived mathematical models is estimated by simulation
results for a low pressure natural gas pipeline including downward and upward curved
sections. The simulation results show that the proposed model and solution can be used for
estimating the PIG dynamics when we pig the pipeline including curved section.

Key words : Pipeline Inspection Gauge (PIG), Method Of Characteristic (MOC),
Pipeline
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1. Intrduction

Pipelines are the most common way
and the safest method to transport oil and
gas products. During operation, the walls of
pipelines suffer a deterioration process and
pipeline conditions get worse. Pipelines can
be failed with time if they are not properly
maintained. One part of a maintenance
procedure of pipelines is pigging them
regularly to prevent the increase of their
wall roughness and the reduction of the
internal diameter. The tool used for pigging
is called Pipeline Inspection Gauge (PIG).
There are different types of PIG and each
type is designed for some different desired
purposes. All of the PIGs are the most
effective when they run at a near constant
speed but will not be effective in case that
they run at too high speed. The typical
speeds for utility pigging are about 1-5mv/s
for on-stream liquids and 2-7m/s for on-
stream gas. Excessive and uncontrolled
speed of a PIG can be very dangerous. So,
prediction and control of the PIG velocity
are very important when we operate a
pigging process. Pigging of pipelines has
become a standard procedure in gas and oil
industry. One of the difficulties when we
design a pigging operation is in fact that
most of the available knowledge is based
on experiment field. Hence, estimating the
PIG dynamics often involves some
guesswork and, consequently, a high
degree of uncertainty!’).

Results of research on the dynamics of
the PIG in pipelines are scarcely found in
the literature. Some works relating to this
subject have been reported. J.M.M. Out?”),
1993, used Lax-Wendroff scheme for the
integration of gas equations with adaptation
of finite difference grid. The grid has to be
continuously updated with the PIG position
and the fluid values at the new grid points
are estimated by interpolation. Azevedo et
all’l 1996, simplified the solution with
assumption of incompressible and steady
state of flow. P.C.R. Lima®, 1999, solved
the problem by using one-dimensional

KIGAS Vol.6, No.1, March, 2002

semi-implicit finite difference scheme. At
each time step, the nonlinear algebraic
equations are solved using Newton's
method. T.T. Nguyen et all*! 2000,
treated the compressible, unsteady flow
dynamic equations for flows in straight
pipeline by using MOC and solved the PIG
dynamic equation by using Runge-Kuta
method.

The flow in the curved pipe is much
more complex than the flow in straight pipe
because of the centrifugally-induced
secondary motions. Also the PIG dynamics
in curved pipe are nonlinear. At this
moment, there is no paper related to the
dynamics of the PIG when it passes
through the curved section of pipeline.

This paper deals with the PIG dynamics
when it flows through a 90° curved section
of pipeline with compressible and unsteady
low pressure natural gas flow. The PIG
dynamics model is obtained by using
Lagrange equation under the condition that
it passes through 3 different sections in the
curved pipeline such that it moves into,
inside and out of the curved section. The
downstream and upstream flow dynamics
including the curved sections are solved
using MOC. The initial values of upstream
and downstream are get from the analytical
equation of general unsteady, compressible
flow equations under assumption of steady
state dynamics. The initial values of
upstream and downstream flows and the
PIG dynamics are solved using Runge-
Kuta method. The effectiveness of the
derived mathematical models is estimated
through simulation results for a natural gas
pipeline including downward and upward
curved sections.

II. Modeling

The scheme of PIG flow in curved pipe can
be described in Fig. 1.
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Fig.1. PIG flow in the bending pipeline.

1. Gas Flow Model

We assume as the following:

i. the natural gas is ideal,

ii. flow is one phase,

iit. the pipeline diameter is constant,

iv. the friction factor is a function-of
wall roughness and Reynolds
number. Steady state values are
used in transient calculations,

v. the flow is quasi-steady heat flow.

The unsteady flow dynamic equations
for flow in stral%ht pipeline are given in the
previous  work'' In this paper, we
consider the flow in curved section. The
flows in curved pipe are much more
complex than those in the straight pipe
because of the centrifugally-induced
secondary _motions. There are rich
analytical literature related to the flow in
curved pipe (Adler, 1934; Hasson, 1955;
Barua,1963; Mori and Nakayama, 1965; Ito,
1975; Collin and Denis, 1975; VanDyke,
197810,

It is wéll known that the flows in
curved pipe depend on the Dean nimber x :

1/2
K =252 Re = [RLJ 2du (1)
b 14

The friction ratio between the curved
pipe and the straight pipe with the same
flow conditions is studied by Adler, 1934;
Hasson,1955; Tto, 1975; and Van Dyke,
19781, They suggested the approximate
function for the friction ratio f, / f, which
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is a function of Dean number. Among them,
the ‘model proposed by Hasson well fitted
to the experiment data and the friction ratio
is given as follows''%:

Le - 0.0969 k172 4 0.556 2

s

Here we do not need to consider the
behavior of the secondary flow. Our
problem is to know the average flow values
at each cross section in curved pipeline.
Hence, in this paper we use the Hasson
approximate function (2) to estimate the
friction coefficient of the flow in the
curved pipe..The friction coefficient in the
straight pipe can be found in the
references” 239121

Consider the control volume as shown
in Fig. 2.

4 (pAu)oa
a

pA +'i(pA Yoa
da

Fig. 2. Control volume for application
of motion flow equation in curved
pipe section.

When da is small enough, the four basic
flow equations such as continuity,
momentum, state and energy equations can
be derived as the following:

o, u 0, pou_j, 3)
ot R, %a R, Oc

F
La—pﬁtﬂ‘-ﬁl @+—f—pgcosa 0

R, da R, 0a ' o A
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The mathematical description of the heat
rate term, ¢ in Eq. (6) depends on the

problem assumptions. Because there is no
heat producing in flow, ¢ could be

evaluated as a quasi-steady heat transfer
from the surrounding environment to the
gas:

g=Cc(Tpy —-T) (7
Let us define
s=R,a 0<s<R,7m/2

After some rearrangement, the above
equations can be rewritten as follows:

?£-+ua—p+p—al=0

ot Os Os
(3)

F

2,20, 10 Fr s (_j
ot 0s p Os pA R,
9)

op op Ou
—+tu—-++ _

ot “as rp Os

-1

77{[5, - Apg cos (ﬁ)]u+q$}

(10)

Using MOC™'¥ to transform the nonlinear
hyperbolic partial differential equations
(8)-(10) to the ordinary differential
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equations which can be integrated by finite
differences in the form, we can obtain the
following equations:

ﬂ+—C—Q=E1 along d—s=u+c
dt pp dt dt
(11
u_c P _F oatong E-u-
dt ppdt _ t
(12)
—dﬁ— 2% _E along Ry
dt t
(13)
where
- F,
E= =14 +(—f—gcosa L—u—l)
c pm | pA c
(14)
E2=—Z———li—[—i—gcosa 7—u+1)
c pm {pAd
(15)

g (Fr
Ey= (y-1)—+|——-gcosa {(y-Dup
m pA

(16)

m=AlS, 12

c=(yp/p)

The initial values of flow are given
from steady state condition of flow. The
governing steady flow equations can be
derived from the analytical equations (8)-

(10):

pu.=const
(17)
F
b I1 g [R_]
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Fig. 3. The scheme of PIG flow in
downward curved pipe.

2. PIG Dynamics Model

Dynamic equation for PIG flow in
straight pipeline can be found in
references'' ™. In this paper we deal with
the PIG moving in 90° curved section of
pipeline. The PIG contacts pipe’s wall
through its front and tail cups. To model
the PIG motion in curved pipe, we consider
that the mass of the PIG is concentrated at
its end parts as shown in Fig. 3. Hence, the
mass of the PIG becomes 2 particle masses
located at its nose and tail.

(e}

The PIG moves through curved pipe in
three different sections: moving into,
moving inside and moving out of the
curved section as shown in the above figure.
To derive its dynamic equation, we use
Lagrange method!'" . Let us consider the
system of 2 particles whose positions are
given by Cartesian coordinates (x;, ),
(i=1,2). The system is one degree of
freedom and ¢ is chosen to be generalized
coordinate. Lagrange equation is in the
form:

op _
ca

d(aKj_aK F (20)

di\2a,) oa
where K, P and F are kinetic energy,

potential energy and generalized force,
respectively:

K=%ml(i_]z ) 2)+%"’2(-"'22+}"22)

21

P=mgy +mygy, (22)

'\' ,ay
F=F" g’i’—ﬂLFl-‘ L+F2"

Ja ca oa

A
[eA R v -
2 FyY s

T Ca

(23)

where m; is the mass of the particle 7; (x;, y))
is coordinate of the particle i; F;*, F;" is
the force acting on the particle i in the
direction of x and y coordinates (7=/,2).
Using equations .(20)-(23), after some
calculations, we can get the dynamic
equations of the PIG when it passes
through each curved section I, II and III as
shown in Fig. 3, respectively:

.. m,YY .
a+——-—-———22 = > al=
m Ry +m,Y”

mgR,cosa +m,gY —Fi R, +F,Y

2 2
mR,” +m,Y~

(24)
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&_mlgcosa+m2gcos(a—a0)—Fl +F

(my +my)R,

(25)
oMl .o _mgcost—AT+HR,
mT” +myRy’ mT” +mRy’

(26)
where

X= ,/L,,,Gz - R, (1-cosa)®

R 2
b [sin a - Lsin 2a)
X 2

Y = Rycos a +

_ar
oa

Z=yLpg’ - Ry*(1-sina)’

Ya

R,’ 1
T=R, sin @ + —2—| cos @ — —sin 2a
Z 2
or
T, =—
o

The forces acting on the PIG include
gravity force of the PIG, the different
pressure across its body and friction force.
Generalized forces acting on the PIG in
each section are given in the following:

In section I:

F, =-mg cosa +(p,,A +%Ffp)cosa,,

1 .
F, =m2g+(p,A——2—Fﬂ,Jc039,
9, zsin,,(Rb(l—cosa)]’
Lpg

6,=a-6,
In section II:

F = 4 1 a,

| =—mgcosa+| p, +EFfp cos—z-—

F =ngcosa—ao)+(p,A—%Ffpjcosiz°

In section III:

F =[p,,A +%Ffpjcost9,,
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Fy=m,gcosa+ (p,A —%Fﬁ,)cosﬁ,

n= ’

Ly

T
6, =E_(a+9")

O<a<a,
a, =cos"(1 e } >\ v,
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Fig. 4. The scheme of PIG flow in
upward curved pipe.

The scheme for deriving - the PIG
dynamics when it moves in upward curved
pipe is given in Fig. 4. ,
In the case of upward curved section, by
the same way, we have the dynamic
equations of the PIG as follows:

In section I:

F=mg sina+(p,,A+%Fﬁ,)cos¢9,,

1.
F, =(p,A —EFfp]cose,

0’ = Sin'l(M] . 6" =a — 9’
PIG

m¥Y, . _-mgRsin-FR +RY

mR? +myY*

a+ > >
MR +mY

@7
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In section II:

K =m]gsina+(pnA+%Fjb]cos—0;—°

£ =—»fzgsin€z~ao)+(p,A—-;-Fﬁ»)008%

= ~mygsing~mgsinla-oy)—F + F,

(my +my)R,

(28)
In section I1I:
Fi= m,g+(p,,A +%Ffp)c059,,
Fy =-mygsina +(p,A -%Fﬁ,)cose,
o, =sin“(””(’ -sina))’
PIG
Q:%‘m+g)

d+~nﬂ§___d2 =
m|T2 +m2Rb2

-mgT -mygR, sine-FT+F R,

2 2
mT” +myR,

(29
II1. Simnlation and Results

The computational scheme for solving
the PIG dynamics together with upstream
and down stream flow dynamics by using
MOC were presented in the previous
work!"3 Egs. (17)-(19) are solved using
Runge-Kuta method to get the initial values
of upstream and downstream flows in
pipeline. Also the PIG dynamic equations
are solved using Runge-Kuta method.

The simulation is done with a low
pressure natural gas pipeline including start
riser, downward curved, upward curved
and end raiser sections. This type of
pipeline is used when we transport gas
from buoy to tank as shown in the Fig. 5.
The scheme of pipeline using in the
simulation is given in Fig. 6.

-7 -

Temporary Tank
Launcher/Receiver

. SubseaPipaline. PIG . .

Fig. 5. The U-shaped pipeline used to
transport gas.
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R=3d =3

{- pipeline length L from bottomef-
start riser to bottom of end risér

T

Fig. 6. Séheme of pipeline using in the
simulation.

We choose the sampling time
At=0.001s and the sampling distance
Ax=0.5785m And two following
boundary conditions of interest are used:
(1) constant flow rate at pipeline inlet
uo (1) = u, and constant pressure at pipeline
outlet p; (t) = p; ; (2) constant pressure at
pipeline inlet p,(¢) = p, and constant flow
rate at pipeline outlet «; (£} =u, .

The numerical values using in this
simulation are given in the Table. 1.

Table, 1. Numerical values for
simulation.

Parameters| Values {Units{Parameters| Values | Units
L 12 Lm v 1 43e-5 {m'/s
Lo 12 (m R 518.30 |J/kgK
Lex 12 1m ¥ 1.40
Lpig L1 |m M 750 kg
d 0.7366 |m Cc 2 | wim's
ngG 11 |m ngG 4 (ms
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k 0.0450 [mm | Fp 0.33 |bar
Po 8 |bar pL 7.65 |bar
7)) 116 \ms | Q1 1.16 |m/s

5.44 lkgh 5.20 [kg/m’
Po Ml py &
Toxs 15 ()C T 15 oc

Figure 7 shows the different pressure
acting on the PIG. It varies with different
operational boundary conditions.
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Fig. 7. Different pressure acting on the
PIG.
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Fig. 8. PIG velocity vs. PIG position.
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Fig. 9. PIG velocity vs. time.
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Figure 8 shows the PIG velocity at each
its position. In both cases, the maximum
velocities seem to be the same but in case
of the second boundary condition, the PIG
arrives its trap barrel with lower velocity.
Fig. 9 shows the PIG velocity vs. time
when it moves in the pipeline. The PIG
velocity oscillates in the different manners
in different parts of the pipeline.

IV. Conclusion

This paper presents simple models for
flow and the PIG dynamics when it passes
through a ‘90° curved section of pipeline.
The simulation has been done with two
different operational boundary conditions.
The solution for non-linear hyperbolic
partial equations for flow is given by using
MOC. The Runge-Kuta method is used to
solve the initial condition equation for flow
and the PIG dynamics equation. The
simulation results show that the proposed
model and solution can be used for
estimating the PIG dynamics when the pig
runs in the pipeline including curved
section. '
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Nomenclatures
A pipe cross section [m’]
¢ wave speed [m/s]
Cc convection heat transfer coefficient ,
[m” ]
d  internal diameter of pipeline [m]

f.  friction coefficient in curved pipeline
f;  friction coefficient in straight pipeline

F, braking force [N]

F; friction force per unit pipe length
{N/m

Fy, friction force between the PIG and[NV %
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pipe wall

force due to different pressure [N ]
acting on the PIG

gravity acceleration [m/s]
pipe wall roughness [m}

length of pipeline [m]
length of start riser [m]
length of end riser [m]
length of the PIG [m]
hydraulic mean radius of pipe  [m]
mass of the PIG [kg]
flow pressure [N/m" ]

compound rate of heat inflow [W/m" ]
per unit area of pipe’s wall

gas constant [JkgK ]
bending radius of curved section [m ]
perimeter of pipe [m]
distance from inlet of curved section

i
flow temperature [°C]
seabed temperature [’cy
flow velocity [m/s]

Greeks:
the ratio of specific heat
Dean number
kinetic viscosity of flow [m/s]
flow density [kg/m’ ]
Subscripts

denote the points at the nose and tail
of the PIG

denote the points at inlet and outlet of
pipeline
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