• Title/Summary/Keyword: 3차해석

Search Result 1,466, Processing Time 0.033 seconds

The Cubically Filtered Gradient Algorithm and Structure for Efficient Adaptive Filter Design (효율적인 적응 필터 설계를 위한 제 3 차 필터화 경사도 알고리즘과 구조)

  • 김해정;이두수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1714-1725
    • /
    • 1993
  • This paper analyzes the properties of such algorithm that corresponds to the nonlinear adaptive algorithm with additional update terms, parameterized by the scalar factors a1, a2, a3 and Presents its structure. The analysis of convergence leads to eigenvalues of the transition matrix for the mean weight vector. Regions in which the algorithm becomes stable are demonstrated. The time constant is derived and the computational complexities of MLMS algorithms are compared with those of the conventional LMS, sign, LFG, and QFG algorithms. The properties of convergence in the mean square are analyzed and the expressions of the mean square recursion and the excess mean square error are derived. The necessary condition for the CFG algorithm to be stable is attained. In the computer simulation applied to the system identification the CFG algorithm has the more computation complexities but the faster convergence speed than LMS, LFG and QFG algorithms.

  • PDF

Numerical Simulation of Selective Withdrawal in Stably Stratified Flows (안정성층류에서 선택취수의 수치해석)

  • Paik, Joong-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.973-984
    • /
    • 2005
  • A three-dimensional thermal hydrodynamic model is developed for carrying out unsteady simulation of the selective withdrawal of the stably stratified flow in a geometrically complex, natural reservoir The governing equations are discretized on a non-staggered grid using a second-order accurate, finite-volume scheme. The numerical model is validated by applying it to simulate three-dimensional, turbulent, stratified, shear-layer flow case. The numerical predictions appear to capture reasonably well the general shape of velocity and temperature profiles observed in the laboratory experiments, while significant overestimation of the magnitude of velocity profiles is observed in the application to the flow in a natural reservoir. The physics of selective withdrawal as emerge from the numerical simulations are also discussed.

Implicit Stress Integration of the Generalized Isotropic Hardening Constitutive Model : II . Verification (일반 등방경화 구성관계에 대한 내재적인 음력적분 : II. 검증)

  • 오세붕;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.87-100
    • /
    • 1996
  • This paper verifies the accuracy and efficiency of the implicit stress integration algorithm for an anisotropic hardening constitutive model developed in a companion paper[Oh & Lee (1996)3. Simulation of undrained triaxial test results shows the accuracy of the method through an error estimation, and analyses of accuracy and convergence were performed for a numerical excavation problem. As a result, the stress was accurately integrated by the algorithm and the nonlinear solution was converged to be asymptotically quadratic. Furthermore nonlinear FE analysis of a real excavation problem was by performed considering the initial soil conditions and the in-situ construction sequences. The displacements of wall induced by excavation were more accurately estimated by the anisotropic hardening model than by the Cam-clay model.

  • PDF

Numerical Analysis of Nonlinear Effect of Wave on Refraction and Diffraction (파의 굴절 및 회절에 미치는 비선형 효과에 대한 수치해석)

  • 이정규;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-57
    • /
    • 1990
  • Based on second-order Stokes wave and parabolic approximation, a refraction-diffraction model for linear and nonlinear waves is developed. With the assumption that the water depth is slowly varying, the model equation describes the forward scattered wavefield. The parabolic approximation equations account for the combined effects of refraction and diffraction, while the influences of bottom friction, current and wind have been neglected. The model is tested against laboratory experiments for the case of submerged circular shoal, when both refraction and diffraction are equally significant. Based on Boussinesq equations, the parabolic approximation eq. is applied to the propagation of shallow water waves. In the case without currents, the forward diffraction of Cnoidal waves by a straight breakwater is studied numerically. The formation of stem waves along the breakwater and the relation between the stem waves and the incident wave characteristics are discussed. Numerical experiments are carried out using different bottom slopes and different angles of incidence.

  • PDF

Development of Real-Fluid Package Compatible with Chemkin for High-Pressure Kerosene/LOx Combustion (케로신/액체산소의 고압 연소해석을 위한 열역학/전달 물성치 해석 패키지 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.89-92
    • /
    • 2011
  • The modeling of thermodynamic non-idealities and transport anomalies is a crucial prerequisite to realistically simulate the mixing and combustion processes of liquid propellants injected above critical pressures. This study has developed a specific set of subroutines to calculate the thermodynamic and transport properties based on the generalized cubic equation of state (EoS) in a coupled manner with the standard chemical kinetics packages (Chemkin). The existing flamelet analysis code is extended with the real-fluid package and applied to numerical investigation of local flame structures of kerosene and liquid oxygen at high pressure conditions relevant to the actual rocket engines.

  • PDF

Analysis of Modified Digital Costas Loop Part II : Performance in the Presence of Noise (변형된 디지탈 Costas loop에 관한 연구 (II) 잡음이 있을 경우의 성능 해석)

  • 정해창;은종관
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.3
    • /
    • pp.37-45
    • /
    • 1982
  • This paper is a sequel of the Part I paper[1] on the modified digital Costas loop. In this Part II we analyze the performance of the system in the presence of noise. It is shown that, when the input signal is corrupted by additive white Gaussian noise, the noise process in the loop becomes Rician as a result of the tan-1 (.) function of the phase error detector. Steady state probability density functions of phase errors of the first-and second-order loops have been obtained by solving the Chapman-Kolmogorov equation numerically. Also, the mean and variance of phase error in the steady state have been obtained analytically, and are compared with the results obtained by computer simulation.

  • PDF

Line Current Characteristics of Multilevel H-Bridge Inverters: Part II - Harmonic Reduction with Multiple Transformer Windings (다단 H-브릿지 인버터의 입력전류특성(II) - 다중 변압기 결선에 의한 고조파 저감)

  • Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.237-245
    • /
    • 2008
  • Recently, multilevel H-bridge inverters have become popular in medium to high power ac drive applications. One of significant advantages of them is low harmonic contents in their input line currents thanks to the transformer with multiple phase-shifted secondary windings. This paper attempts to provide basic guidelines for the design of the phase shifting transformer windings and theoretical analysis of input line current harmonics of H-bridge inverters. The part II is devoted to the analysis of the harmonic characteristics of the input line current, providing mathematical background for the equidistant phase-shifting angle distribution policy for harmonic elimination.

Finite Element Analysis of the Neutron Transport Equation in Spherical Geometry (구형에서 중성자 수송방정식의 유한요소법에 의한 해석)

  • Kim, Yong-Ill;Kim, Jong-Kyung;Suk, Soo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.319-328
    • /
    • 1992
  • The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation.

  • PDF

A Numerical Analysis for the Dynamic Behavior of the Umbilical Cable of a Deep-sea Unmanned Underwater Vehicle (심해 무인잠수정 1차 케이블의 동적거동 수치해석)

  • Kwon, Do-Young;Park, Han-Il;Jung, Dong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.31-38
    • /
    • 2005
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The umbilical cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behavior of a marine cable. In this study, a numerical program is established based on a finite difference method. The program is appled to 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.

소규모 개발지역의 토사재해예측에 관한 연구

  • Park, Ki-Bum;Park, Eun-Yeong;Cha, Sang-Hwa;Kim, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.512-515
    • /
    • 2012
  • 최근의 재해 발생은 하천에 의한 범람, 제방의 붕괴 등에 의한 피해발생보다는 일정지역에 국한적으로 내수배제 불량, 토사유출, 산사태 등으로 인한 피해의 발생이 증가하고 있다. 특히나 도시지역과 신규개발지역을 중심으로 집중호우로 인한 토사유출 등으로 인한 배수로 막힘, 산사태등의 2차적인 피해가 증가하고 있는 추세이다. 2011년의 서울의 우면산 산사태 등과 같은 도시중심에서의 피해와 강원도 등의 신규개발지역에서의 토사로 인해 2차, 3차 피해는 국지적이고 예측이 불가능한 곳에서 발생되고 있다. 이러한 토사유출, 산사태에 의한 예측기법은 최근의 정보기술의 발달로 인해 보다 다양한 방법의 접근들이 시도되고 있으며, 이에 대한 정량적인 평가기법들이 개발되고 적용되고 있다. 본 연구에서는 산지지형의 소규모 개발지의 토사재해의 위험성을 평가하기 위하여 GIS 기술을 이용한 사면의 안정성과 산사태 위험성을 평가하는 대표적인 방법으로 Pack et al. (1998)이 제안한 수리적 무한사면 안정모델과 결합하여 사면안정분석을 위해 개발된 SINMAP을 이용하여 소규모 개발지역의 토석류 해석과 사면의 안정성 검토 그리고 범용토양공식을 이용하여 토사유출량을 산정하여 개발지역내 사면 및 토사재해의 위험성을 평가하였다. GIS를 이용한 지형적 특성에 따른 사면의 위험성과 토사유출량 해석 결과를 이용하여 소규모 개발지역의 토사재해의 위험성을 정량적이고 다각적으로 평가하여 재해발생에 따른 위험성을 노출하고 이에 대한 대책 수립에 도움이 될 것으로 판단된다.

  • PDF