DOI QR코드

DOI QR Code

Numerical Simulation of Selective Withdrawal in Stably Stratified Flows

안정성층류에서 선택취수의 수치해석

  • Paik, Joong-Cheol (School of Civil and Environment Engineering, Georgia Institute of Technology)
  • 백중철 (조지아공대 토목환경공학과)
  • Published : 2005.11.01

Abstract

A three-dimensional thermal hydrodynamic model is developed for carrying out unsteady simulation of the selective withdrawal of the stably stratified flow in a geometrically complex, natural reservoir The governing equations are discretized on a non-staggered grid using a second-order accurate, finite-volume scheme. The numerical model is validated by applying it to simulate three-dimensional, turbulent, stratified, shear-layer flow case. The numerical predictions appear to capture reasonably well the general shape of velocity and temperature profiles observed in the laboratory experiments, while significant overestimation of the magnitude of velocity profiles is observed in the application to the flow in a natural reservoir. The physics of selective withdrawal as emerge from the numerical simulations are also discussed.

3차원 열동수역학 모형을 개발하여 지형학적으로 복잡한 자연 저수지에서 안정한 성층류의 선택 취수를 부정류 모의하였다. 지배방정식은 2차 정확도의 유한체적법을 이용하여 해석하였다. 개발된 수치모형을 3차원 난류, 성층화된 전단층흐름에 적용하여 검정을 하였다. 수치해석결과는 실험실에서 관측된 선택취수시의 속도 및 온도분포의 일반적인 형상을 양호하게 예측하는 것으로 나타났으나, 자연 저수지에서의 흐름에 대한 적용시에는 속도의 크기를 과대모의 하는 것으로 나타났다. 수치모의에서 구해진 선택취수의 물리적 특성을 논하였다.

Keywords

References

  1. Debler, W.R. (1959). 'Stratified flow into a line sink' ASCE, J. Eng. Mech Diu., pp. 51-65
  2. Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J. and Brooks, N.H (1979). Mixing in Inland and Coastal Water. Academic Press, New York
  3. Forbes, L.K. and Hocking, G.C. (2003). 'On the computation of steady axi-symmetric withdrawal from a two-layer fluid.' Comput. Fluids, Vol. 32, pp 385-401 https://doi.org/10.1016/S0045-7930(01)00085-8
  4. Imberger, J. (1972). 'Two-dimensional sink flow of a stratified fluid contained in a duct.' Journal of Fluid Mecianics, Vol. 53, pp. 329-349 https://doi.org/10.1017/S0022112072000187
  5. Imberger, J. (1980). 'Selective Withdrawal. A Review.', Second International Symposium on Stratified Flows, Trondheim, Norway, pp. 381-400
  6. Ivey, G.N, and Blake, S. (1985). 'Axisymmetric withdrawal and inflow in a density-stratified container.' Journal of Fluid Mechanics, Vol. 161, pp. 115-137 https://doi.org/10.1017/S0022112085002841
  7. Kundu, P.K. (1990). Fluid Mechanics, California: Academic Press
  8. Mason, P.J. (1989). Large eddy simulation of the convective boundary layer.' J. Atmos. Sci., Vol. 45, pp. 1492-1516 https://doi.org/10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2
  9. Mason, P.J. and Thomson, D. J. (1992). 'Stochastic backscatter in large-eddy simulation of boundary layers.' Journal of Fluid Mechanics. Vol. 242, pp. 51-78 https://doi.org/10.1017/S0022112092002271
  10. McGuirk, J.J. and Islam, S.A.K.M. (1987). 'Numerical Modelling of the Influence of a Hood on Axisymmetric Withdrawal from a Density Stratified Environment.' Proceedings of the Third International Symposium on Stratified Flows, Pasadena California, pp. 1047-1060
  11. Paik, J., Sotiropolous, F. and Sale, M. J. (2005). 'Numerical simulation of swirling flow m a hydroturbine draft tube using unsteady statistical turbulence models.' Journal of hydraulic Engineering, Vol. 131, No 6, pp. 441-456 https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(441)
  12. Pao, H.-P. and Kao, T.W. (1974). 'Dynamics of establishment of selective withdrawal of a stratified fluid from a line sink. Part 1. Theory.' Journal of Fluid Mechanics, Vol. 65, part 4, pp. 657-688 https://doi.org/10.1017/S0022112074001595
  13. Pao, H.-P., Kao, T.W., and Wei, S.N. (1974). 'Dynamics of establishment of selective withdrawal of a stratified fluid from a line sink. Part 2. Experiment.' Journal of Fluid Mechanics, Vol. 65, part 4, pp. 689-710 https://doi.org/10.1017/S0022112074001601
  14. Poinsot, T.J., and Lele, S.K. (1992). 'Boundary Conditions for Direct Simulations of Compressible Viscous Flows.' Journal of Computational Physics, Vol. 101, pp. 104-129 https://doi.org/10.1016/0021-9991(92)90046-2
  15. Rodi, W. (1987). 'Examples of calculation methods for flow and mixing in stratified fluids.' Journal of Geophysical Research, Vol. 92, No. C5, pp. 5305-5328 https://doi.org/10.1029/JC092iC05p05305
  16. Sladkevich, M., Militeev, A.N., Rubin, H., and Kit, E. (2000). 'Simulation of Transport Phenomena In Shallow Aquatic Environment.' Journal of Hydraulic Engineering, Vol. 126, No.2, pp. 123-136 https://doi.org/10.1061/(ASCE)0733-9429(2000)126:2(123)
  17. Sotiropoulos, F. and Abdallah (1992). 'A Primitive Variable Method for the Solution of Three-Dimensional Incompressible Viscous Flows.' Journal of Computational Physics, Vol. 103, pp. 336- 349 https://doi.org/10.1016/0021-9991(92)90405-N
  18. Tang, H. S., Jones, S. C. and Sotiropoulos, F. (2003). 'Domain Decomposition with overset grids for 3D incompressible flows.' Journal of Computational Physics, Vol. 191, pp. 567-600 https://doi.org/10.1016/S0021-9991(03)00331-0
  19. Thompson, K.W. (1990). 'Time-Dependent Boundary Conditions for Hyperbolic Systems, II.' Journal of Computational Physics, Vol. 89, pp. 439-461 https://doi.org/10.1016/0021-9991(90)90152-Q
  20. Viollet, P.-L. (1980). 'Turbulent Mixing in a Two-Layer Stratified Shear Flow.' Second International Symposium on Stratified Flows, Trondheim, Norway, pp. 315-325
  21. Wood, I.R. (2001). 'Extensions to the theory of selective withdrawal.' Journal of Fluid Mechanics, Vol. 448, pp.315- 333 https://doi.org/10.1017/S002211200100605X