• Title/Summary/Keyword: 2nd phase

Search Result 592, Processing Time 0.032 seconds

High Temperature Oxidation Behavior of Nd-doped $UO_2$ (네오듐 고용 이산화우라늄의 고온 산화거동)

  • Lee, Jae-Won;Kang, Sang-Jun;Kim, Young-Hwan;Cho, Kwang-Hun;Park, Guen-IL;Lee, Jung-Won
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.227-230
    • /
    • 2013
  • The phase change of $(U_{1-x}Nd_x)_3O_8$ powder produced by oxidation of Nd-doped $UO_2$ pellet at $500^{\circ}C$ was investigated by high temperature oxidation heat treatment at $900{\sim}1500^{\circ}C$ under an air atmosphere. The XRD analysis results showed that the formation of $(U_{1-y}Nd_y)O_{2+z}$ phase and $U_3O_8$ phase from metastable $(U,Nd)_3O_8$ phase initiated at a temperature of $1000^{\circ}C$. The relative integrated intensity of $(U_{1-y}Nd_y)O_{2+z}$ phase to $U_3O_8$ phase increased with increasing of the oxidation temperature from 1100 to $1500^{\circ}C$. And also, it was found from the SEM observation that the particle size of $(U_{1-y}Nd_y)O_{2+z}$ phase increased with increasing of the oxidation temperature. However, electrone probe X-ray microanalyzer (EPMA) analysis results showed that Nd contents in $(U_{1-y}Nd_y)O_{2+z}$ phase decreased with increasing of the oxidation temperature. This behavior on the ground of XRD, SEM, and EPMA analysis data could be interpreted in terms of the transportation of U ions from $U_3O_8$ phase into $(U_{1-y}Nd_y)O_{2+z}$ phase through the interface of two phases during high temperature oxidation.

Thermal Stability of Superconductor NdBCO Sintered at Various Oxygen Partial Pressures (다양한 산소분압에서 소결한 NdBCO 초전도체의 열적 안정성)

  • Chung, J.K.;Kim, W.J.;Park, S.C.;Kang, S.G.;Lim, Y.J.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.133-138
    • /
    • 2009
  • The $Nd_{1+x}Ba_{2-x}Cu_3O_{7-{\delta}}$(Nd123) superconductor exhibits high performance in high magnetic field and high temperature. We have studied phase stability for Nd123 under reduced oxygen partial pressure and various heat-treatment conditions. The main phase is Nd123 and some samples contain small amounts of Nd422 depending on the temperature and oxygen partial pressure. The decomposition temperature decreases with decreasing oxygen partial pressure from $1052^{\circ}C(P(O_2)$=150 Torr) to about $845^{\circ}C(P(O_2)$=0.1 Torr). The liquidus line was steeper temperature with decreasing oxygen partial pressure. In same condition of oxygen partial pressure, the region of stable Nd123 phase was formed at slightly higher temperature than the region of stable YBCO phase.

  • PDF

TMA Study on Phase Evolution During Hydrogen-assisted Disproportionation of Nd-Fe-B Alloy

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.229-233
    • /
    • 2011
  • Phase evolution during the hydrogen-assisted disproportionation of $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy was investigated mainly by using a magnetic balance-type thermomagnetic analyser (TMA). In order to avoid any undesirable phase change in the course of heating for TMA, a swift TMA technique with very high heating rate (around 2 min to reach $800^{\circ}C$ from room temperature) was adopted. The hydrided $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy started to be disproportionated in hydrogen from around $600^{\circ}C$, and the alloy after the early disproportionation (from 600 to $660^{\circ}C$) has been partially disproportionated. The partially disproportionated alloy consisted of a mixture of $NdH_x$, $Fe_3B$, ${\alpha}$-Fe, and the remaining undisproportionated $Nd_2Fe_{14}BH_x$-phase. During the subsequent heating to $800^{\circ}C$ in hydrogen, two additional phases of $Fe_{23}B_6$ and $Fe_2B$ were formed, and the material consisted of a mixture of $NdH_x$, $Fe_{23}B_6$, $Fe_3B$, $Fe_2B$, and ${\alpha}$-Fe phases. During the subsequent isothermal holding at $800^{\circ}C$ for 1 hour, the phase constitution was further changed, and one additional unknown magnetic phase was formed. Eventually, the fully disproportionated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy consisted of $NdH_x$, $Fe_{23}B_6$, $Fe_3B$, $Fe_2B$, ${\alpha}$-Fe, and one additional unknown magnetic phase.

The Influence on the Corrosion Fatigue Crack Propagation in Changing of the Second Phase Hardness of Dual Phase Steel (複合組織鋼의 第2相 硬度變化가 腐蝕疲勞 크랙傳播에 미치는 影響)

  • 오세욱;김웅집
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.42-52
    • /
    • 1993
  • The corrosion fatigue fracture behaviour of dual phase steel was investigated in 3% NaCl solution at 302MPa and 137MPa. Fatigue test was conducted by cantilever type of self-made rotary bending fatigue testing machine. The fatigue strength increased with increasing the hardness of 2nd phase. Corrosion pit originated at the boundary of the 2nd phase. The size and number of corrosion pits were influenced by the 2nd phase hardness, and pits remained constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of .DELTA. K and da/dN has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the greater the corrosion fatigue life becomes. Corrosion fatigue fracture behaviour was primarily effected by mechanical factor in case of high stress(302MPa), but by electro-chemical reaction in a lower stress(137MPa). As stress level got lower and hardness of the 2nd phase got higher, the roughness of fracture surface increased.

  • PDF

Microstructure and Magnetic Properties of Rapidly Solidified Nd-Fe(-Co) and Sm-Co(-Fe) Laves Compounds (급속냉각된 Nd-Fe(-Co)와 Sm-Co(-Fe)계 Laves 화합물의 미세조직과 자기특성)

  • 이우영;최승덕;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 1991
  • Laves phases of $NdFe_2$, $Nd{(Fe_{0.5})}_2$, $SmCo_2$ and $Sm{(Fe_{0.5}Co_{0.5})}_2$ stoichiometry were prepared using a rapid solidification technology. Low temperature magnetic properties show ferromagnetic behaviors for the $Nd{(Fe_{0.5}Co_{0.5})}_2$, $SmCo_2$ and $Sm{(Fe_{0.5}Co_{0.5})}_2$Nd(Feo,Coo,) Laves compounds while a sort of spin reorientation has been suggested for the supposed composition of $NdFe_2$ alloy. This rapidly solidified $NdFe_2$ alloy is believed to consist of metastable rhombohedral $NdFe_7$ phase plus fine particles of Nd-rich phase. Some evidence of phase transition from the mixture of unstable $NdFe_7$ compound plus Nd-rich to $Nd_2Fe_{17}$ plus Fe-Nd-O phase was obtained after annealing the $NdFe_2$, alloy. The pseudo-binary Laves compound, $Sm{(Fe_{0.5}Co_{0.5})}_2$ exhibits a high coercivityof 4 kOe at room temperature with Curie temperature of $400^{\circ}C$ while the $Nd{(Fe_{0.5}Co_{0.5})}_2$ compound shows a magnetic moment of $2.8\;{\mu}_B/f.u.$.

  • PDF

Phase Relation and Microwave Dielectric Properties of $BaO-(Nd, Sm)_2O_3-TiO_2$ Ceramic System ($BaO-(Nd, Sm)_2O_3-TiO_2$계 세라믹스의 상관계 및 마이크로파 유전특성)

  • 김희도;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.995-1004
    • /
    • 1994
  • Phase relation and microwave dielectric properties of the system BaO.(Nd1-xSmx)2O3.TiO2 (n=4, 5) were studied. With n=5 (1 : 1 : 5), Ba2Ti9O20 and TiO2 formed in case of X$\leq$0.7, and Ba2Ti9O20 and Sm2Ti2O7 formed at X=1.0 as the second phases dispersed in fine-grained orthorhombic matrix phase. With n=4 (1 : 1 : 4). on the contrary, only fine grains of an ortho-rhombic phase were observed irrespective of Nd/Sm ratio. The compositions of these two stable orthorombic phases having distinct lattic constants even with the same Nd/Sm ratio were estimated as 4BaO.5(Nd1-xSmx)2O3.18TiO2 and BaO.(Nd1-xSmx)2O3.4TiO2 with n=5 and n=4 in the system BaO.(Nd1-xSmx)2O3.TiO2, respectively. Consequently the composition BaO.(Nd1-xSmx)2O3.5TiO2 lies in the compatible triangle of 4BaO.5(Nd1-xSmx)2O3.18TiO2 and the second phases mentioned above. The microwave dielectric properties (~4 GHz) of BaO.(Nd1-xSmx)2O3.5TiO2 can be controlled effectively by adjusting Sm content : with increasing X from 0 to 0.7, both dielectric constant and the temperature coefficient of resonant frequency decreased monotonically from 82 to 65 and from 91 (ppm/$^{\circ}C$) to -19(ppm/$^{\circ}C$), respectively, while unloaded Q(Qo) remained constant at about 2,600.

  • PDF

Synthesis and Characterization of Intergrowth Type Perovskite Oxide NdSr2MnCrO7

  • Singh, Devinder
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2761-2764
    • /
    • 2011
  • A new Ruddlesden-Popper phase $NdSr_2MnCrO_7$ has been prepared by the standard ceramic method. The powder X-ray diffraction studies suggest that the phase crystallizes with tetragonal unit cell in the space group I4/mmm. The electrical transport properties show that the phase is an electrical insulator and the electrical conduction in the phase occurs by a 3D variable range hopping mechanism. The magnetic studies suggest that the ferromagnetic interactions are dominant.

The Coercivity Enhancement of (Nd,Dy)-Fe-B Sintered Magnet by Microstructure Control (미세구조 제어를 통한 (Nd,Dy)-Fe-B 소결자석의 보자력 증가)

  • Kim, Jin-Woo;Kim, Se-Hoon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Sintered Nd-Fe-B magnets are widely used in many fields such as motors, generators, actuators, microwaves and so on due to their excellent magnetic properties. Many researchers have shown that the Nd-rich phase was essentially important for high magnet properties. In this study, we focused on controlling of the Nd-rich phase to enhance magnetic properties by the cyclic sintering process. Nd-Fe-B based sintered magnets were prepared by isothermal sintering and cyclic sintering processes. Magnetic properties and microstructure of the magnets were investigated. The coercivity was enhanced from 21.2 kOe to 23.27 kOe after 10 cycles of the sintering. The Nd-rich phase was effectively penetrated into the grain boundary between the $Nd_2Fe_{14}B$ grains by the cyclic sintering.

Effect of Co-Substitution on the Crystallization and Magnetic Properties of a Mechanically Milled Nd15(Fe1-xCox)77B8 (x=0-0.6) Alloy

  • Kwon, H.W.;Yang, C.J.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.143-146
    • /
    • 2002
  • Mechanical milling technique is considered to be a useful way of processing the fine Nd-Fe-B-type powder with high coercivity. In the present study, phase evolution of the $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ (x=0-0.6) alloys during the high energy mechanical milling and annealing was investigated. The effect of Co-substitution on the crystallization of the mechanically milled $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ amorphous material was examined. The Nd-Fe-B-type alloys can be amorphized completely by a high-energy mechanical milling. On annealing of the amorphous material, fine $\alpha$-Fe crystallites form first from the amorphous. These fine $\alpha$-Fe crystallites reacts with the remaining amorphous afterwards, leading to crystallization to $Nd_2Fe_{14}$B phase. The Co-substitution for Fe in $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ ($\mu$x=0∼0.6) alloys lower significantly the crystallization temperature of the amorphous phase to the $Nd_2Fe_{14}$B phase. The mechanically milled and annealed $Nd_{15}Fe_{77}B_8$ alloy without Co-substitution exhibits consistently better magnetic properties with respect to the alloys with Co-substitution.

Effect of the change of second phase hardness on corrosion fatigue behavior of dual phase steel in 3% nacl solution (3% NaCl 수용액중에서 복합조직강의 부식피로거동에 미치는 제2상 속도변화의 영향)

  • 오세욱;김웅집
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.85-93
    • /
    • 1992
  • The only hardness of 2nd phase of martensite in dual phase steel which was composed of the martensite and ferrite was changed. Fatigue test was conducted by cantilever type of self-made rotated bending fatigue testing machine. The corrosion fatigue fracture behaviors of dual phase steel were investigated in 3% NaCl solution at $N_f$ = $1.5\times$$10^5$ $N_f$=1.0 $\times$ $10^6$ cycles. The fatigue strength was increased with increasing the hardness of 2nd phase. The size and number of corrsion pits were influenced by the 2nd phase hardness and pits remain constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of $\Delta$K and da/dn has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the higher the corrosion fatigue life becomes. Corrosion fatigue fracture behavior was effected by mechanics in case of $N_f$=1.5$\times$10$^5$$N_f$=1.5$\times$10$^6$ cycles.

  • PDF