Thermal Stability of Superconductor NdBCO Sintered at Various Oxygen Partial Pressures

다양한 산소분압에서 소결한 NdBCO 초전도체의 열적 안정성

  • Chung, J.K. (Institute of Industrial Technology, Changwon National University) ;
  • Kim, W.J. (Institute of Industrial Technology, Changwon National University) ;
  • Park, S.C. (i-Cube Center & Advanced Materials Research Institute, Gyeongsang National University) ;
  • Kang, S.G. (i-Cube Center & Advanced Materials Research Institute, Gyeongsang National University) ;
  • Lim, Y.J. (i-Cube Center & Advanced Materials Research Institute, Gyeongsang National University) ;
  • Kim, C.J. (i-Cube Center & Advanced Materials Research Institute, Gyeongsang National University)
  • Published : 2009.04.30

Abstract

The $Nd_{1+x}Ba_{2-x}Cu_3O_{7-{\delta}}$(Nd123) superconductor exhibits high performance in high magnetic field and high temperature. We have studied phase stability for Nd123 under reduced oxygen partial pressure and various heat-treatment conditions. The main phase is Nd123 and some samples contain small amounts of Nd422 depending on the temperature and oxygen partial pressure. The decomposition temperature decreases with decreasing oxygen partial pressure from $1052^{\circ}C(P(O_2)$=150 Torr) to about $845^{\circ}C(P(O_2)$=0.1 Torr). The liquidus line was steeper temperature with decreasing oxygen partial pressure. In same condition of oxygen partial pressure, the region of stable Nd123 phase was formed at slightly higher temperature than the region of stable YBCO phase.

Keywords

References

  1. A. Takagi, T. Yamazaki, T. Oka, Y. Yanagi, Y. Itoh, M. Yoshikawa, Y. Yamada and U. Mizutani, Physica C 250, 222 (1995). https://doi.org/10.1016/0921-4534(95)00350-9
  2. M. Murakami, N. Sakai, T. Higuchiz and S. I. Yoo, Supercond. Sci. Technol. 9, 1015 (1996). https://doi.org/10.1088/0953-2048/9/12/001
  3. M. Badaye, F. Wang, Y. Kanke, K. Fukushima, and Tadataka Morishita, Appl. Phys. Lett, 66, 2131 (1995). https://doi.org/10.1063/1.113926
  4. G. Osabe, T. Takizawa, S. I. Yoo, N. Sakai, T. Higuchi, M. Murakami, Mater. Sci. Eng. B. 65, 11 (1999). https://doi.org/10.1016/S0921-5107(99)00191-9
  5. H. Shaked, B. W. Veal, J. Faber, Jr., R. L. Hitterman, U. Balachandran, G. Tomlins, H. Shi, L. Morss and A. P. Paulikas, Phys Rev B. 41, 4173 (1990). https://doi.org/10.1103/PhysRevB.41.4173
  6. K. Takita, H. Katohm H. Akinaga, M. Nishino, T. Ishigaki and H. Asano, Jpn. Appl. Phys. 27, L57 (1988). https://doi.org/10.1143/JJAP.27.L57
  7. K. Takita, H. Akinaga, H. Katoh and K. Masuda, Jpn. J. Appl. Phys. 27, L1676 (1988). https://doi.org/10.1143/JJAP.27.L1676
  8. J. L. MacManus-Driscoll, P. C. Wang, J. Bravman, R. Beyers, Physica C 241, 401 (1995). https://doi.org/10.1016/0921-4534(94)02369-7
  9. S.-I. Yoo and R.W. Mc Callum, Physica C 210, 147 (1993). https://doi.org/10.1016/0921-4534(93)90019-M
  10. W. Bieger, G. Krabbes, P. Schäitzle, L. Zelenina, U. Wiesner, P. Verges and J. Klosowski, Physica C 257, 46 ( 1996). https://doi.org/10.1016/0921-4534(96)00706-X
  11. T. B. Lindemer, E. D. Specht, P. M. Martin, M. L. Flitcroft, Physica C 255, 66 (1995).