• Title/Summary/Keyword: phase stability

Search Result 1,969, Processing Time 0.029 seconds

Stability Criterion of Repetitive Control System Using Phase-Lead and Lag Compensator (진상,지상 보상기를 고려한 반복제어계의 안정성 판별)

  • 서진호;강병철;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.41-45
    • /
    • 1997
  • To design a control system, it is a elementary point that the stability of the system should be guaranteed. Also, the phase of the system plays an important role for its frequence performance. In this paper, we present two stability criterion of repetitive control system with phase-lead and lag compensator. First, the stability criterion for the servo control system with phase-lead and lag compensator is shown by using small-gain theorem. Second, for the repetitive control system with the compensator, the stability criterion, also, is determined by using small-gain theorem. Two stability criterions show the same results that the stability depends on a coefficient of the phase-lead and lag compensator under some condition in servo control system and repetitive control system.

  • PDF

Dye removal from water using emulsion liquid membrane: Effect of alkane solvents on efficiency

  • Ghaemi, Negin;Darabi, Farzaneh;Falsafi, Monireh
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • Effect of different alkane based solvents on the stability of emulsion liquid membrane was investigated using normal alkanes (n-hexane, n-heptane, n-octane and n-decane) under various operating parameters of surfactant concentration, emulsification time, internal phase concentration, volume ratio of internal phase to organic phase, volume ratio of emulsion phase to external phase and stirring speed. Results of stability revealed that emulsion liquid membrane containing n-octane as solvent and span-80 (5 % (w/w)) as emulsifying agent presented the highest amount of emulsion stability (the lowest breakage) compared with other solvents; however, operating parameters (surfactant concentration (5% (w/w)), emulsification time (6 min), internal phase concentration (0.05 M), volume ratio of internal phase to organic phase (1/1), volume ratio of emulsion phase to external phase (1/5) and stirring speed (300 rpm)) were also influential on improving the stability (about 0.2% breakage) and on achieving the most stable emulsion. The membrane with the highest stability was employed to extract acridine orange with various concentrations (10, 20 and 40 ppm) from water. The emulsion liquid membrane prepared with n-octane as the best solvent almost removed 99.5% of acridine orange from water. Also, the prepared liquid membrane eliminated completely (100%) other cationic dyes (methylene blue, methyl violet and crystal violet) from water demonstrating the efficacy of prepared emulsion liquid membrane in treatment of dye polluted waters.

Stability of High Internal Phase Emulsions

  • Park, C.I.;Cho, W.G.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.65-74
    • /
    • 1999
  • We have studied the stability of W/O high internal phase emulsions(HIPE) containing water, cetyl dimethicone copolyol and oils varying magnesium sulfate in the range 0 to 0.5 wt% and oil polarities, respectively. The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The greater the increase of complex modulus was, the less coalescence occurred and the more consistent the concentrated emulsions were. The increasing pattern of complex modulus versus volume fraction has been explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsion. The stability is dependent on: (i) the choice of the oil is important, the requirements coincide with the requirements for the formation of the rigid liquid crystalline phases; and (ii) addition of salts the aqueous phase opposes the instability due to coalescence. Increasing the salt concentration increases the refractive index of the aqueous phase. It lowers the difference in the refractive index between the oil and aqueous phases. This decreases the attraction between the water domains, thus increasing the stability.

  • PDF

An Adaptive Autoreclosure Scheme with Reference to Transient Stability for Transmission Lines

  • Heo, Jeong-Yong;Oh, Yun-Sik;Seo, Hun-Chul;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.795-803
    • /
    • 2015
  • Autoreclosure provides a means of improving power transmitting ability and system stability. Conventional reclosure adopts the fixed dead time interval strategy, where the reclosure is activated after a time delay to restore the system to normal as quickly as possible without regard to the system conditions. However, these simple techniques cannot provide optimal operating performance. This paper presents an adaptive autoreclosure algorithm including variable dead time, optimal reclosure, phase-by-phase reclosure and emergency extended equal-area criterion (EEEAC) algorithm in order to improve system stability. The reclosure algorithm performs the operations that are attuned to the power system conditions. The proposed adaptive reclosure algorithm is verified and tested using ATP/EMTP MODELS, and the simulation results show that the system oscillations are reduced and the transient stability is enhanced by employing the proposed adaptive reclosure algorithm.

Stability of High Internal Phase Emulsions

  • Park, C-I.;W-G. Cho
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.65-74
    • /
    • 1999
  • We have studied the stability of W/O high internal phase emulsions(HIPE) containing water, cetyl dimethicone copolyol and oils varying magnesium sulfate in the range 0 to 0.5wt% and oil polarities, respectively. The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The greater the increase of concentrated modulus was, the less coalescence occurred and the more consistent the concentrated emulsions were. The increasing pattern of complex modulus versus volume fraction has been explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsion. The stability is dependent on: (i) the choice of the oil is important, the requirements coincide with the requirements for the formation of the rigid liquid crystalline phases :5; and (ii) addition of salts the aqueous phase opposes the instability due to coalescence:. Increasing the salt concentration increases the refractive index of the aqueous phase. It lowers the difference in the refractive index between the oil and aqueous phases. This decreases the attraction between the water domains, thus increasing the stability.

  • PDF

Manufacturing Process of Translucent Microemulsion and Its Stability (Translucent Microemulsion의 제조 공정과 안정성)

  • Bae, Duck-Hwan;Shin, Jae-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2000
  • The process variables for the manufacture of translucent microemulsion prepared with 2-octyl dodecanol, 12-hydroxy stearic acid cholesteryl , POE(40)HCO and 1,3-butandiol were examined initially (primary emulsion) and following aging for three months. The techniques empolyed in this study were particle size, turbidity, interfacial tension and microfluidizer. Particle size analysis and turbidity measurement to evaluate the emulsion stability were used. It was concluded that the process of the emulsification was an important indicator of the stability of the translucent microemulsion. From the particle size and and turbidity measurement of translucent microemulsion, adding the surfactant to the oil phase before the emulsification was found to be the most important factor for the stability of emulsions. We found that interfacial tension of the adding the surfactant to the oil phase is lower than that of the adding the surfactant to aqueous phase. In spite of hydrophilic surfactant, adding the surfactant to aqueous phase produced inferior emulsion to that to oil phase.

Emulsion stability of cosmetic creams based on water-in-oil high internal phase emulsions

  • Park, Chan-Ik;Cho, Wan-Gu;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The emulsion stability of cosmetic creams based on the water-in-oil (W/O) high internal phase emulsions (HIPEs) containing water, squalane oil and cetyl dimethicone copolyol was investigated with various compositional changes, such as electrolyte concentration, oil polarity and water phase volume fraction. The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The slope change of complex modulus versus water phase volume fraction monitored in the linear viscoelastic region could be explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsions: the greater the increase of complex modulus was, the more the coalescence occurred and the less consistent the emulsions were. Emulsion stability was dependent on the addition of electrolyte to the water phase. Increasing the electrolyte concentration increased the refractive index of the water phase, and thus decreased the refractive index difference between oil and water phases. This decreased the attractive force between water droplets, which resulted in reducing the coalescence of droplets and increasing the stability of emulsions. Increasing the oil polarity tended to increase emulsion consistency, but did not show clear difference in cream hardness among the emulsions.

Effect of Phase Stability on the Microstructure Development of α-SiAlON Ceramics

  • Kim, Joosun;Lee, Hae-Weon;Chen, I-Wei
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.118-122
    • /
    • 2003
  • Alpha-SiAlON ceramics having various compositions and modifying cations were investigated with respect to their phase stability, transformation kinetics. and resulting microstructures. Each composition was heat treated at 150$0^{\circ}C$ for 1h and measured the $\alpha$-SiAlON transformation. The phase-boundary composition in the single-phase $\alpha$-SiAlON region showed sluggish transformation from $\alpha$-$Si_3N_4$ to $\alpha$-SiAlON compared to the phase-center composition in the diagram. Using the different rare earth modifying cations, dependence of transformation kinetics on the phase stability in a fixed composition was also explained. By changing size of the stable u-phase region with exchanging cations, systematic change in transformation was observed. Transformation rate of $\alpha$-SiAlON at low temperature has an important role on controlling the final microstructure. Less transformation gives more chances to develop elongated grain in the microstructure.

Efffects of Synchronous Vibration of Bearing on Stability of Externally Pressurized Air Journal Bearing (베어링의 동기 진동이 외부 가압 공기 저어널 베어링의 안정성에 미치는 영향)

  • Lee, Jeong-Bae;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 1997
  • Results of theoretical investigations of the stability characteristics of externally pressurized air journal bearing, of which bearing is synchronously vibrate with respect to rotor, are presented. Linearized perturbation method is used to get the dynamic coefficients of air bearing, and the Routh-Hurwitz criterion is used to obtain stability map. The stability characteristics operating at zero steady-state eccentricity is investigated of various phase difference of bearing to rotor. It is shown that stability of air bearing is greatly influenced by synchronous motion of bearing, there exists optimum phase difference which gives maximum stability threshold.

Dependence of Phase Stability of Tetragonal Zirconia Polycrystal on Dopants

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.297-303
    • /
    • 1998
  • The effect of aliovalent dopants, $ Nb_2O_5$ and MnO, on the phase stability of 12 mol% ceria partially-stabilized zirconia (Ce-TZP) polycrystals was studied. Both dopants (MnO and $ Nb_2O_5$) significantly increased the stability of the tetragonal zirconia phase (Mb temperature lower than liquid nitrogen temperature). The enhancement of the stability of the tetragonal phase in Ce-TZP doped with 1 mol% of Mno(Ce-TZP/MnO) andCe-TZP doped with 1 mol% of $ Nb_2O_5$(Ce-TZP/$ Nb_2O_5$) were explained by the significant reduction of the driving force, -${\Delta}$Gchem, for the tetragonal-to-mono-clinic phase transformation caused by the addition of MnO and $ Nb_2O_5$. The enhanced stability of the tetragonal phase in the Ce-TZP and Al2O3 composite (Ce-TZP/$Al_2O_3$) is believed to be caused by smaller grain size, moderate reduction in the chemical driving force and increase in the strain energy barrier to the transformation. Mechanical properties of the Ce-TZP and the Ce-TZP/$Al_2O_3$ with (i) the same grain size and (ii) the same Mb temperature were examined by measuring stress-strain behavior in 3 point bending. The Ce-TZP/$Al_2O_3$ composite doped with 1.3w% MnO (Ce-TZP/$Al_2O_3$/MnO), which had the same grain size as the Ce-TZP and De-TZP/$Al_2O_3$ showed more transformation plasticity than either the Ce-TZP or the Ce-TZP/$Al_2O_3$ composite. The Ce-TZP wihch had the same Mb temperature as that of the Ce-TZP/$Al_2O_3$/MnO did not show any transformation plasticity.

  • PDF