High Temperature Oxidation Behavior of Nd-doped $UO_2$

네오듐 고용 이산화우라늄의 고온 산화거동

  • Published : 2013.06.10

Abstract

The phase change of $(U_{1-x}Nd_x)_3O_8$ powder produced by oxidation of Nd-doped $UO_2$ pellet at $500^{\circ}C$ was investigated by high temperature oxidation heat treatment at $900{\sim}1500^{\circ}C$ under an air atmosphere. The XRD analysis results showed that the formation of $(U_{1-y}Nd_y)O_{2+z}$ phase and $U_3O_8$ phase from metastable $(U,Nd)_3O_8$ phase initiated at a temperature of $1000^{\circ}C$. The relative integrated intensity of $(U_{1-y}Nd_y)O_{2+z}$ phase to $U_3O_8$ phase increased with increasing of the oxidation temperature from 1100 to $1500^{\circ}C$. And also, it was found from the SEM observation that the particle size of $(U_{1-y}Nd_y)O_{2+z}$ phase increased with increasing of the oxidation temperature. However, electrone probe X-ray microanalyzer (EPMA) analysis results showed that Nd contents in $(U_{1-y}Nd_y)O_{2+z}$ phase decreased with increasing of the oxidation temperature. This behavior on the ground of XRD, SEM, and EPMA analysis data could be interpreted in terms of the transportation of U ions from $U_3O_8$ phase into $(U_{1-y}Nd_y)O_{2+z}$ phase through the interface of two phases during high temperature oxidation.

$(U_{1-x}Nd_x)O_2$ 소결체를 $500^{\circ}C$에서 산화하여 얻은 $(U_{1-x}Ndx)_3O_8$ 분말의 상변화를 $900{\sim}1500^{\circ}C$의 공기 중에서 고온 산화 열처리를 하여 조사하였다. $1100^{\circ}C$ 이상의 온도로 산화 열처리할 경우에 Nd 농도가 높은 $(U_{1-y}Nd_y)O_{2+z}$ 상과 $U_3O_8$ 상이 생성됨을 확인하였으며, 산화 열처리 온도가 높아질수록 $(U_{1-y}Nd_y)O_{2+z}$ 상에서의 Nd 농도는 감소하였다. 산화 열처리 온도의 증가에 따라서 $U_3O_{8-w}$ 입자로부터 $(U_{1-y}Nd_y)O_{2+z}$ 입자로의 U 양이온 및 Nd 양이온이 두 입자의 계면을 통해 농도 구배에 따른 확산에 의해서 $(U_{1-y}Nd_y)O_{2+z}$ 상 내에 U의 농도는 증가하고 Nd의 농도는 감소하게 된다. 이러한 현상은 산화 열처리 온도증가에 따라서 $U_3O_8$ 상에 대한 $(U_{1-y}Nd_y)O_{2+z}$ 상의 X-선 회절피크의 적분강도비 증가와 $(U_{1-y}Nd_y)O_{2+z}$ 상의 입자가 커지는 것과 연관하여 해석할 수 있었다.

Keywords

References

  1. H. Assmann and J. P. Robin, Guidebook on Quality Control of Mixed Oxides and Gadolinium Bearing Fuels for Light Water Reactors, IAEA (Ed.), IAEA-TECDOC-584, 51 (1983).
  2. R. J. McEachern and P. Taylor, J. Nucl. Mater., 254, 87 (1998). https://doi.org/10.1016/S0022-3115(97)00343-7
  3. D. Labroche, O. Dugne, and C. Chatillon, J. Nucl. Mater., 312, 21 (2003). https://doi.org/10.1016/S0022-3115(02)01322-3
  4. D. Labroche, O. Dugne, and C. Chatillon, J. Nucl. Mater., 312, 50 (2003). https://doi.org/10.1016/S0022-3115(02)01323-5
  5. P. Taylor and R. J. McEachern, WO 96/36971 (1996).
  6. J. H. Yang, K. W. Kang, K. S. Kim, K. W. Song, and J. H. Kim, J. Korean Nucl. Soc., 33, 307 (2001).
  7. C. Keller, H. Engerer, L. Leitner, and U. Sriyotha, J. Inorg. Nucl. Chem., 31, 965 (1969). https://doi.org/10.1016/0022-1902(69)80144-2
  8. C. Keller and A. Boroujerdi, J. Inorg. Nucl. Chem., 34, 1187 (1972). https://doi.org/10.1016/0022-1902(72)80318-X
  9. U. Berndt, R. Tanamas, and C. Keller, J. Solid State Chem., 17, 113 (1976). https://doi.org/10.1016/0022-4596(76)90209-7
  10. I. B. De Alleluia, M. Hoshi, W. G. Jocher, and C. Keller, J. Inorg. Nucl. Chem., 43, 1831 (1981). https://doi.org/10.1016/0022-1902(81)80392-2
  11. R. J. Ackermann and A. T. Chang, J. Chem. Thermodyn., 5, 873 (1973). https://doi.org/10.1016/S0021-9614(73)80050-3
  12. E. D. Lynch, J. H. Handwerk, and C. L. Hoenig, J. Amer. Ceram. Soc., 43, 520 (1960). https://doi.org/10.1111/j.1151-2916.1960.tb13607.x
  13. A. M. Anthony, R. Kiyoura, and T. Sata, J. Nucl. Mater., 10, 8 (1963). https://doi.org/10.1016/0022-3115(63)90112-0