• Title/Summary/Keyword: 2D-to-3D Conversion

Search Result 872, Processing Time 0.028 seconds

Design of the RF Front-end for L1/L2 Dual-Band GPS Receiver (L1/L2 이중-밴드 GPS 수신기용 RF 전단부 설계)

  • Kim, Hyeon-Deok;Oh, Tae-Soo;Jeon, Jae-Wan;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1169-1176
    • /
    • 2010
  • The RF front-end for L1/L2 dual-band Global Positioning System(GPS) receiver is presented in this paper. The RF front-end(down-converter) using low IF architecture consists of a wideband low noise amplifier(LNA), a current mode logic(CML) frequency divider and a I/Q down-conversion mixer with a poly-phase filter for image rejection. The current bleeding technique is used in the LNA and mixer to obtain the high gain and solve the head-room problem. The common drain feedback is adopted for low noise amplifier to achieve the wideband input matching without inductors. The fabricated RF front-end using $0.18{\mu}m$ CMOS process shows a gain of 38 dB for L1 and 41 dB for L2 band. The measured IIP3 is -29 dBm in L1 band and -33 dBm in L2 band, The input return loss is less than -10 dB from 50 MHz to 3 GHz. The measured noise figure(NF) is 3.81 dB for L1 band and 3.71 dB for L2 band. The image rejection ratio is 36.5 dB. The chip size of RF front end is $1.2{\times}1.35mm^2$.

Optimal design of switched reluctance motor using 2D FEM and 3D equivalent magnetic circuit network method (2차원 FEM과 3차원 등가자기회로방법을 이용한 SRM의 최적 설계)

  • Jung, S.I.;Kim, Y.H.;Lee, J.;Kim, H.L.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.125-127
    • /
    • 2001
  • Switched reluctance motor (SRM) has some advantages such as low cost, high torque density etc. However SRM has inevitably high torque ripple due to the double salient structure. To apply SRM to industrial field, we have to minimize torque ripple, which is the weak-Point of SRM. This paper presents optimal design process of SRM using numerical method such as 2D finite element method (FEM) and 3D equivalent magnetic circuit network method (EMCNM). The electrical and geometrical design parameters have been adopted as 2D design variables. The overhang structure of rotor has been also adopted as 3D design variable. From this work, we can obtain the optimal design, which minimize the torque ripple and maximize energy conversion loop.

  • PDF

Proposal of BIM Application Process to Improve BIM Applicability of Basic Design in Heavy Civil Projects (토목 분야 기본설계 단계 BIM 적용성 향상을 위한 BIM 적용 프로세스 제안)

  • Song, EunSol;Moon, SoYeong
    • Land and Housing Review
    • /
    • v.13 no.3
    • /
    • pp.115-123
    • /
    • 2022
  • Recently, the adoption of BIM technology in domestic civil engineering projects has continually increased both in its numbers and scope. However, the BIM model was developed and used after the 2D design was developed instead of creating the BIM model from the conceptual design phase. BIM must be used throughout every phase of design and construction to use BIM for its original purpose. However, if BIM application is applied in heavy civil projects without a step-by-step guideline, it can confuse the market and face industry resistance to using BIM. Therefore, BIM is currently being used step by step in the civil engineering field by using BIM as a conversion design. However, the BIM conversion design method, currently being performed in the Preliminary design stage, has many difficulties due to low work efficiency. This paper analyzes the existing process of converting a 2D design into a 3D BIM model while addressing the issues related to its low work efficiency. To this end, a novel approach to 2D to BIM conversion for the design development stage is proposed.

Stereoscopic Conversion based on Key Frames (키 프레임 기반 스테레오스코픽 변환 방법)

  • 김만배;박상훈
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.219-228
    • /
    • 2002
  • In this paper, we propose a new method of converting 2D video into 3D stereoscopic video, called stereoscopic conversion. In general, stereoscopic images are produced using the motion informations. However unreliable motion informations obtained especially from block-based motion estimation cause the wrong generation of stereoscopic images. To solve for this problem, we propose a stereoscopic conversion method based upon the utilization of key frame that has the better accuracy of estimated motion informations. As well, as generation scheme of stereoscopic images associated with the motion type of each key frame is proposed. For the performance evaluation of our proposed method, we apply it to five test images and measure the accuracy of key frame-based stereoscopic conversion. Experimental results show that our proposed method has the accuracy more than about 90 percent in terms of the detection ratio of key frames.

Exploratory Experimental Analysis for 2D to 3D Generation (2D to 3D 창의적 생성을 위한 탐색적 실험 분석)

  • Hyeongrae Cho;Ilsik Chang;Hyunseok Kang;Youngchan Go;Gooman Park
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.109-123
    • /
    • 2023
  • Deep learning has made rapid progress in recent years and is affecting various fields and industries. The art field cannot be an exception, and in this paper, we would like to explore and experiment and analyze research fields that creatively generate 2D images in 3D from a visual arts and engineering perspective. To this end, the original image of the domestic artist is learned through GAN or Diffusion Models, and then converted into 3D using 3D conversion software and deep learning. And we compare the results with prior algorithms. After that, we will analyze the problems and improvements of 2D to 3D creative generation.

The low conversion loss and low LO power V-band MIMIC Up-mixer (낮은 LO 입력 및 변환손실 특성을 갖는 V-band MIMIC Up-mixer)

  • Lee Sang Jin;Ko Du Hyun;Jin Jin Man;An Dan;Lee Mun Kyo;Cho Chang Shik;Lim Byeong Ok;Chae Yeon Sik;Park Hyung Moo;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, we present MIMIC(Millimeter-wave Monolithic Integrated Circuit) up-mixer with low conversion loss and low LO power for the V-band transmitter applications. The up-mixer was successfully integrated by using 0.1 ㎛ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide (CPW) structures. The circuit is designed to operate at RF frequencies of 60.4 GHz, IF frequencies of 2.4 GHz, and LO frequencies of 58 GHz. The fabricated MIMIC up-mixer size is 2.3 mmxl.6 mm. The measured results show that the low conversion loss of 1.25 dB when input signal is -10.25 dBm at LO power of 5.4 dBm. The LO to RF isolation is 13.2 dB at 58 GHz. The fabricated V-band up-mixer represents lower LO input power and conversion loss characteristics than previous reported millimeter-wave up-mixers.

Design of 100mW Frequency Tripler Operating at 7 GHz (7 GHz 대역 100 mW 주파수 3체배기의 제작)

  • Roh, Hee-Jung;Joo, Jae-Hyun;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • In this paper, a frequency tripler has been designed with 100mW medium-power using P-HEMT. It is designed to obtain 7.2 GHz frequency at the output that is an integer multiple of 2.4 GHz input frequency by using nonlinear device that produces 3rd harmonic. The frequency tripler is designed by using load-pull simulation. To suppress the 2nd and fundamental, notch filter is used for the frequency tripler. The tripler is designed to obtain about 21dBm output power with 15 dBm input, i.e., 6 dB conversion gain and the suppression of 20 dBc at fundamental, and 30 dBc at the second harmonics.

Design and Fabrication of the Frequency Tripper for Medium Power (중전력 주파수 3체배기 설계 및 제작)

  • Roh, Hee-Jung;Lee, Byung-Sun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.47-52
    • /
    • 2010
  • In this paper, a frequency tripler has been designed with 100mW medium-power using P-HEMT. It is designed to obtain 7.2GHz frequency at the output that is an integer multiple of 2.4GHz input frequency by using nonlinear device that produces 3rd harmonic. The frequency tripler is designed by using load-pull simulation. To suppress the 2nd and fundamental, notch filter is used for the frequency tripler. The tripler is designed to obtain about 21dBm output power with 15dBm input, i.e., 6dB conversion gain and the suppression of 20dBc at fundamental, and 30dBc at the second harmonics.

A New Structure Frequency Doubler Using Phase Delay Line (위상 지연 선로를 이용한 새로운 구조의 주파수 2체배기)

  • Cho, Seung-Yong;Lee, Kyoung-Hak;Kim, Yong-Hwan;Do, Ji-Hoon;Lee, Hyung-Kyu;Hong, Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.213-219
    • /
    • 2007
  • In this paper, A novel structure of frequency doubler using Phase Delay line and $90^{\circ}$ Hybrid coupler at harmonic output have been designed and implemented to improve suppression. Proposed structure of frequency doubler improve output. coupling and fundamental suppression. Active frequency doubler with band from $2.13{\sim}2.15GHz\;to\;4.26{\sim}4.3GHz$ was designed and fabricated with 10dBm input power, 0.79dB conversion gain and -55.54dBc suppression at fundamental frequency, -44.76dBc suppression at third harmonic frequency 6.42GHz and -39.18dBc suppression at fourth harmonic frequency 8.56GHz.

Low Conversion Loss and High Isolation W-band MMIC Mixer Module (낮은 변환 손실 및 높은 격리 특성의 W-band MMIC 믹서 모듈)

  • An, Dan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.50-54
    • /
    • 2015
  • In this paper, we report on a high performance 94 GHz MMIC mixer module using 0.1-um metamorphic high electron mobility transistors (MHEMTs). A modified resistive mixer with a RF amplifier was proposed in this work for low conversion loss and high LO-RF isolation. The MMIC mixer module was fabricated using a MMIC chip and CPW-waveguide transitions. The fabricated mixer chip and module showed a low conversion loss of 6.3 dB and 9.5 dB, and LO-RF isolations of 24.8 and 30.4 dB at 94 GHz, respectively. This results are superior to those of previously W-band (75-110 GHz) MMIC mixers.