Acknowledgement
이 글은 2022년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2021-0-00751, 0.5mm급 이하 초정밀 가시·비가시 정보 표출을 위한 다차원 시각화 디지털 트윈 프레임워크 기술개발).
References
- Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka,Wadim Kehl and Adrien Gaidon,Differentiable Rendering, 2020, https://arxiv.org/pdf/2006.12057.pdf
- Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng, NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 2020, doi: https://doi.org/10.1145/3503250
- Artist's statement, https://en.wikipedia.org/wiki/Artist%27s_statement (Accessed November. 17, 2022)
- Jiatao Gu, Lingjie Liu, Peng Wang, Christian Theobalt, STYLENERF: A STYLE-BASED 3D-AWARE GENERATOR FOR HIGH-RESOLUTION IMAGE SYNTHESIS, 2021, https://arxiv.org/pdf/2110.08985.pdf
- Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, Ben Poole, Zero-Shot Text-Guided Object Generation with Dream Fields, 2022. doi: https://doi.org/10.1109/cvpr52688.2022.00094
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever, Learning Transferable Visual Models From Natural Language Supervision, 2021, https://arxiv.org/pdf/2103.00020.pdf
- Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, Wieland Brendel, IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS, 2019, https://openreview.net/pdf?id=Bygh9j09KX
- Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli, Hao Su, NeuTex: Neural Texture Mapping for Volumetric Neural Rendering, 2021, https://arxiv.org/pdf/2103.00762.pdf
- Lukas Hollein, Justin Johnson, Matthias Niessner, Technical University of Munich, University of Michigan, StyleMesh: Style Transfer for Indoor 3D Scene Reconstructions, 2022, doi: https://doi.org/10.1109/cvpr52688.2022.00610
- Aysegul Dundar, Jun Gao, Andrew Tao, Bryan Catanzaro, Fine Detailed Texture Learning for 3D Meshes with Generative Models, 2022, https://arxiv.org/pdf/2203.09362.pdf
- Zhiqin Chen, Vladimir G. Kim, Matthew Fisher, Noam Aigerman, Hao Zhang, Siddhartha Chaudhuri, Simon Fraser University, Adobe Research, IIT Bombay, DECOR-GAN: 3D Shape Detailization by Conditional Refinement, 2021. doi: https://doi.org/10.1109/cvpr46437.2021.01548
- Wang Yifan, Noam Aigerman, Vladimir G. Kim, Siddhartha Chaudhuri, Olga Sorkine-Hornung, ETH Zurich, Adobe Research, IIT Bombay, Neural Cages for Detail-Preserving 3D Deformations, 2020. doi: https://doi.org/10.1109/cvpr42600.2020.00015
- Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, Gordon Wetzstein, Efficient Geometry-aware 3D Generative Adversarial Networks, 2022. doi: https://doi.org/10.1109/cvpr52688.2022.01565
- Xudong Xu, Xingang Pan, Dahua Lin, Bo Dai, Generative Occupancy Fields for 3D Surface-Aware Image Synthesis, "Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI), Nov 2021. doi: https://doi.org/10.48550/arXiv.2111.00969
- Michael Niemeyer, Lars Mescheder, Michael Oechsle, Andreas Geiger, Max Planck Institute for Intelligent Systems, Tubingen, University of Tubingen, Amazon, Tubingen, ETAS GmbH, Bosch Group, Stuttgart, Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision, "Computer Vision and Pattern Recognition (cs.CV), jun 2020. doi: https://doi.org/10.1109/cvpr42600.2020.00356
- Zhiqin Chen, Kangxue Yin, Sanja Fidler, AUV-Net: Learning Aligned UV Maps for Texture Transfer and Synthesis, 2022. doi: https://doi.org/10.1109/cvpr52688.2022.00152
- THOMAS MuLLER, ALEX EVANS, CHRISTOPH SCHIED, ALEXANDER KELLER, Instant Neural Graphics Primitives with a Multiresolution Hash Encoding, 2022. doi: https://doi.org/10.1145/3528223.3530127
- Zhiqin Chen, Thomas Funkhouser, Peter Hedman, Andrea Tagliasacchi, MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures, 2022, https://arxiv.org/pdf/2208.00277.pdf
- Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas Muller, Sanja Fidler, Extracting Triangular 3D Models, Materials, and Lighting From Images, 2022, doi: https://doi.org/10.1109/cvpr52688.2022.00810
- Ben Poole, Ajay Jain, Jonathan T. Barron, Ben Mildenhall, DREAMFUSION: TEXT-TO-3D USING 2D DIFFUSION, 2022, https://arxiv.org/pdf/2209.14988.pdf
- Gwanghyun Kim, Taesung Kwon, Jong Chul Ye,DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation, "CVPR, Jun 2022. doi; https://doi.org/10.1109/cvpr52688.2022.00246
- Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Image Style Transfer Using Convolutional Neural Networks,"CVPR, Jun 2016. doi: https://doi.org/10.1109/cvpr.2016.265
- RUIHUI LI, XIANZHI LI, KA-HEI HUI, and CHI-WING FU, SP-GAN: Sphere-Guided 3D Shape Generation and Manipulation, "ACM Transactions on Graphics, Vol.40, No.4, pp.1-12, Aug 2021. doi: https://doi.org/10.5909/JBE.2020.25.5.776
- RANA HANOCKA, GAL METZER, RAJA GIRYES, DANIEL COHEN-OR, Point2Mesh: A Self-Prior for Deformable Meshes, "ACM Transactions on Graphics,Vol.39, No.4, Aug 2020. doi: https://doi.org/10.1145/3386569.3392415
- Can Wang, Menglei Chai, Mingming He, Dongdong Chen, Jing Liao, CLIP-NeRF: Text-and-Image Driven Manipulation of Neural Radiance Fields, "CVPR, Mar 2022. doi: https://doi.org/10.48550/arXiv.2112.05139
- Diffusion model, https://en.wikipedia.org/wiki/Diffusion_model (Accessed November. 17, 2022)
- Narek Tumanyan, Michal Geyer, Shai Bagon, Tali Dekel, Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation,Tue, 22 Nov 2022. doi: https://doi.org/10.48550/arXiv.2211.12572
- Jonathan Ho, Ajay Jain, Pieter Abbeel, Denoising Diffusion Probabilistic Models, Wed, 16 Dec 2020. doi: https://doi.org/10.48550/arXiv.2006.11239
- Jiaming Song, Chenlin Meng, Stefano Ermon, Denoising Diffusion Implicit Models, Wed, 5 Oct 2022. doi: https://doi.org/10.48550/arXiv.2010.02502
- Songyou Peng, Chiyu "Max" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, Andreas Geiger, Shape As Points: A Differentiable Poisson Solver, "NeurIPS, Mon 7 Jun 2021. doi: https://doi.org/10.48550/arXiv.2106.03452
- Renrui Zhang, Ziyu Guo, Wei Zhang, Kunchang Li, Xupeng Miao, Bin Cui, Yu Qiao, Peng Gao, Hongsheng Li, Shanghai AI Laboratory, Peking University, The Chinese University of Hong Kong, PointCLIP: Point Cloud Understanding by CLIP, "CVPR, Jun 2021. doi: https://doi.org/10.1109/cvpr52688.2022.00836