• Title/Summary/Keyword: 2D integral theory

Search Result 47, Processing Time 0.024 seconds

Nonlocal integral elasticity analysis of beam bending by using finite element method

  • Taghizadeh, M.;Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.755-769
    • /
    • 2015
  • In this study, a 2-D finite element formulation in the frame of nonlocal integral elasticity is presented. Subsequently, the bending problem of a nanobeam under different types of loadings and boundary conditions is solved based on classical beam theory and also 3-D elasticity theory using nonlocal finite elements (NL-FEM). The obtained results are compared with the analytical and numerical results of nonlocal differential elasticity. It is concluded that the classical beam theory and the nonlocal differential elasticity can separately lead to significant errors for the problem under consideration as distinct from 3-D elasticity and nonlocal integral elasticity respectively.

Singular Cell Integral of Green's tensor in Integral Equation EM Modeling (적분방정식 전자탐사 모델링에서 Green 텐서의 특이 적분)

  • Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • We describe the concept of the singularity in the integral equation of electromagnetic (EM) modeling in comparison with that in the integral representation of electric fields in EM theory, which would clarify the singular integral problems of the Green's tensor. We have also derived and classified the singular integrals of the Green's tensors in 3-D, 2.5-D and 2-D as well as in the thin sheet integral equations of the EM scattering problem, which have the most important effect on the accuracy of the numerical solution of the problems.

  • PDF

TYPE SPACES AND WASSERSTEIN SPACES

  • Song, Shichang
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.447-469
    • /
    • 2018
  • Types (over parameters) in the theory of atomless random variable structures correspond precisely to (conditional) distributions in probability theory. Moreover, the logic (resp. metric) topology on the type space corresponds to the topology of weak (resp. strong) convergence of distributions. In this paper, we study metrics between types. We show that type spaces under $d^{\ast}-metric$ are isometric to Wasserstein spaces. Using optimal transport theory, two formulas for the metrics between types are given. Then, we give a new proof of an integral formula for the Wasserstein distance, and generalize some results in optimal transport theory.

Convertible 3D-2D display by use of integral imaging system with plastic fiber array

  • Kim, Young-Min;Choi, Hee-Jin;Cho, Seong-Woo;Kim, Yun-Hee;Kim, Joo-Hwan;Park, Gil-Bae;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1482-1485
    • /
    • 2007
  • A three-dimensional (3D)-two-dimensional (2D) convertible display system using a plastic fiber array is proposed. The proposed system has an advantage of making use of a light source for 3D image from an arbitrary location. The optical efficiency of 3D images in the proposed system is enhanced compared with previous research.

  • PDF

CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT OVER WIENER PATHS IN ABSTRACT WIENER SPACE: AN Lp THEORY

  • Cho, Dong-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.265-294
    • /
    • 2004
  • In this paper, using a simple formula, we evaluate the conditional Fourier-Feynman transforms and the conditional convolution products of cylinder type functions, and show that the conditional Fourier-Feynman transform of the conditional convolution product is expressed as a product of the conditional Fourier-Feynman transforms. Also, we evaluate the conditional Fourier-Feynman transforms of the functions of the forms exp {$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))ds}$\Phi$($\chi$(T)), exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}, exp{$\int_{O}^{T}$ $\theta$(s,$\chi$(s))d${\zeta}$(s)}$\Phi$($\chi$(T)) which are of interest in Feynman integration theories and quantum mechanics.

Nonlinear bending analysis of bidirectional graded porous plates with elastic foundations relative to neutral surface

  • Amr E. Assie
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • The applicability of a novel incremental-iterative technique with 2D differential/integral quadrature method (DIQM) in analyzing the nonlinear behavior of Bi-directional functionally graded (BDFG) porous plate based on neutral surface is verified in the present works. A formulation of four variables high shear deformation theory is used to describe the kinematic relations with respect to neutral surface rather than mid-plane. Bi-directional material distributions are presented by power functions through both thickness and axial directions. Porosities and voids are distributed by different cosine functions. The large deformations are included within the sense of nonlinear von Kármán strains. The integro-differential equilibrium equations with associated modified boundary conditions are solved numerically and iteratively by using 2D DIQM. Model validations and parametric analysis are depicted to present the influence of neutral axis, nonlinear strains, gradation indices, elastic foundations, and modified boundary conditions on the static deflection in addition to normal and shear stresses. The proposed model is effective in analyzing the static behavior of many real applications in nuclear reactors, marine and aerospace structures with large deformations.

BRILL-NOETHER THEORY FOR RANK 1 TORSION FREE SHEAVES ON SINGULAR PROJECTIVE CURVES

  • Ballico, E.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.359-369
    • /
    • 2000
  • Let X be an integral Gorenstein projective curve with g:=pa(X) $\geq$ 3. Call $G^r_d$ (X,**) the set of all pairs (L,V) with L$\epsilon$Pic(X), deg(L) = d, V $\subseteq$ H^0$(X,L), dim(V) =r+1 and V spanning L. Assume the existence of integers d, r with 1 $\leq$ r$\leq$ d $\leq$ g-1 such that there exists an irreducible component, , of $G^r_d$(X,**) with dim($\Gamma$) $\geq$ d - 2r and such that the general L$\geq$$\Gamma$ is spanned at every point of Sing(X). Here we prove that dim( ) = d-2r and X is hyperelliptic.

  • PDF

Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory

  • Sadoun, Mohamed;Houari, Mohammed Sid Ahmed;Bakora, Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2018
  • In this current work a quasi 3D "trigonometric shear deformation theory" is proposed and discussed for the dynamic of thick orthotropic plates. Contrary to the classical "higher order shear deformation theories" (HSDT) and the "first shear deformation theory" (FSDT), the constructed theory utilizes a new displacement field which includes "undetermined integral terms" and presents only three "variables". In this model the axial displacement utilizes sinusoidal mathematical function in terms of z coordinate to introduce the shear strain impact. The cosine mathematical function in terms of z coordinate is employed in vertical displacement to introduce the impact of transverse "normal deformation". The motion equations of the model are found via the concept of virtual work. Numerical results found for frequency of "flexural mode", mode of shear and mode of thickness stretch impact of dynamic of simply supported "orthotropic" structures are compared and verified with those of other HSDTs and method of elasticity wherever considered.

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Fouad Bourada;Abdelhakim Bouhadra
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.307-323
    • /
    • 2023
  • In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

The Effect of the Configuration Interaction on 10Dq in a Point Charge Model (점전하 모형에 의한 10Dq 에서의 배치간 작용의 영향)

  • Hojing Kim;Duckhwan Lee
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 1977
  • For the metal complex of $d^1$ configuration with the octahedrally coordinated ligands, the crystal field parameter, 10Dq, is calculated from first principles within the framework of the crystal field theory. With the point charge model, the configuration interaction is introduced by use of the Shull-L$\"{o}$wdin functions. Through the Integral Hellmann-Feynman Theorem, the higher order effect is visualized. It is found that the higher order effect on 10Dq is about $50{\%}$ of the first order effect. Since 3d function is angularly undistorted and radially equally distorted in $E_g\;and\;T_{2g}$ states, due to the octahedral potential, the calculated 10Dq is still the unique parameter for the splitting.

  • PDF