DOI QR코드

DOI QR Code

Thermodynamical bending analysis of P-FG sandwich plates resting on nonlinear visco-Pasternak's elastic foundations

  • Abdeldjebbar Tounsi (Industrial Engineering and Sustainable Development Laboratory, University of Rélizane, Faculty of Science & Technology, Mechanical Engineering Department) ;
  • Adda Hadj Mostefa (Industrial Engineering and Sustainable Development Laboratory, Department of Civil Engineering, University of Relizane, Faculty of Science & Technology) ;
  • Abdelmoumen Anis Bousahla (Industrial Engineering and Sustainable Development Laboratory, Department of Civil Engineering, University of Relizane, Faculty of Science & Technology) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University) ;
  • Mofareh Hassan Ghazwani (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Fouad Bourada (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Abdelhakim Bouhadra (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • Received : 2022.02.05
  • Accepted : 2023.09.22
  • Published : 2023.11.10

Abstract

In this research, the study of the thermoelastic flexural analysis of silicon carbide/Aluminum graded (FG) sandwich 2D uniform structure (plate) under harmonic sinusoidal temperature load over time is presented. The plate is modeled using a simple two dimensional integral shear deformation plate theory. The current formulation contains an integral terms whose aim is to reduce a number of variables compared to others similar solutions and therefore minimize the computation time. The transverse shear stresses vary according to parabolic distribution and vanish at the free surfaces of the structure without any use of correction factors. The external load is applied on the upper face and varying in the thickness of the plates. The structure is supposed to be composed of "three layers" and resting on nonlinear visco-Pasternak's-foundations. The governing equations of the system are deduced and solved via Hamilton's principle and general solution. The computed results are compared with those existing in the literature to validate the current formulation. The impacts of the parameters (material index, temperature exponent, geometry ratio, time, top/bottom temperature ratio, elastic foundation type, and damping coefficient) on the dynamic flexural response are studied.

Keywords

Acknowledgement

The Authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number: ISP23-69.

References

  1. Abdulrazzaq, M.A. Fenjan, R.M Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. http://dx.doi.org/10.12989/scs.2020.35.1.147.
  2. Abouelregal, A.E. and Sedighi, H.M. (2021c), "A new insight into the interaction of thermoelasticity with mass diffusion for a half-space in the context of Moore-Gibson-Thompson thermodiffusion theory", Appl. Phys. A., 127(8), 1-4. https://doi.org/10.1007/s00339-021-04725-0.
  3. Abouelregal, A.E., Sedighi H.M., Faghidian, S.A. and Shirazi, A.H. (2021a), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Universitatis, Series: Mech. Eng., 19(4), 633-56. https://doi.org/10.22190/FUME201222024A.
  4. Abouelregal, A.E., Sedighi H.M., Shirazi, A.H., Malikan, M. and Eremeyev, V.A. (2022a), "Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore-Gibson-Thompson approach", Continuum Mech. Thermodyn., 34, 1067-1085. https://doi.org/10.1007/s00161-021-00998-1.
  5. Abouelregal, A.E., Sedighi, H.M. and Shirazi, A.H. (2022b), "The effect of excess carrier on a semiconducting semi-infinite medium subject to a normal force by means of green and Naghdi approach", Silicon, 14, 4955-4967. https://doi.org/10.1007/s12633-021-01289-9.
  6. Aboueregal, A.E. Sedighi, H.M. (2021b), "The effect of variable properties and rotation in a visco-thermoelastic orthotropic annular cylinder under the Moore-Gibson-Thompson heat conduction model", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(5), 1004-20. http://dx.doi.org/10.1177/1464420720985899.
  7. Adiyaman, G., Birinci, A., Oner, E. and Yaylaci, M. (2016), "A receding contact problem between a functionally graded layer and two homogeneous quarter planes", Acta Mechanica, 227(6), 1753-1766. https://doi.org/10.1007/s00707-016-1580-y.
  8. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  9. Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
  10. Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
  11. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.
  12. Akbas, S.D. (2018a), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027.
  13. Akbas, S.D. (2018b), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4),337-346. https://doi.org/10.12989/sem.2018.67.4.337.
  14. Akbas, S.D. (2021), "Dynamic analysis of axially functionally graded porous beams under a moving load", Steel Compos. Struct., 39(6), 811-821. https://doi.org/10.12989/scs.2021.39.6.811.
  15. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/SCS.2022.42.5.649.
  16. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  17. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/SEM.2022.81.6.705.
  18. Almitani, K.H. (2018), "Buckling behaviors of symmetric and antisymmetric functionally graded beams", J. Appl. Comput. Mech., 4(2), 115-124. https://doi.org/10.22055/JACM.2017.23040.1147.
  19. Altenbach, H., Altenbach, J. and Kissing, W. (2018), "Mechanics of composite structural elements", 2nd edn. Springer Nature, Singapore, https://doi.org/10.1007/978-981-10-8935-0.
  20. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  21. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
  22. Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/ANR.2022.12.1.037.
  23. Behfar, K. and Naghdabadi, R. (2005), "Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium", Compos. Sci. Technol., 65(7-8), 1159-1164. https://doi.org/10.1016/j.compscitech.2004.11.011.
  24. Birinci, A., Adiyaman, G., Yaylaci, M. and Oner, E. (2015), "Analysis of continuous and discontinuous cases of a contact problem using analytical method and FEM", Latin Amer. J. Solids Struct., 12, 1771-1789. https://doi.org/10.1590/1679-78251574.
  25. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/SEM.2022.81.6.769.
  26. Bouiadjra, R.B., Bachiri, A., Benyoucef, S., Fahsi, B. and Bernard, F. (2020), "An investigation of the thermodynamic effect on the response of FG beam on elastic foundation", Struct. Eng. Mech., 76(1), 115-127. https://doi.org/10.12989/SEM.2020.76.1.115.
  27. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287- 1306. https://doi.org/10.12989/scs.2016.21.6.1287.
  28. Burlayenko, V.N. and Sadowski, T. (2014), "Simulations of post-impact skin/core debond growth in sandwich plates under impulsive loading", J. Appl. Nonlin. Dyn. 3(4), 369-379. https://doi.org/10.5890/JAND.2014.12.008.
  29. Chakrabarti, A. and Sheikh, A.H. (2005), "Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory", J. Eng. Mech., 131(4), 377-384. https://doi.org/10.1061/(asce)0733-9399(2005)131:4(377).
  30. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/SCS.2022.44.6.829.
  31. Cho, J.R. (2022a), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/SCS.2022.42.1.023.
  32. Cho, J.R. (2022b), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/SEM.2022.84.6.723.
  33. Choi, S.H., Heo, I., Kim, J.H., Jeong, H., Lee, J-Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concrete, 30(1), 75-84. https://doi.org/10.12989/cac.2022.30.1.075.
  34. Cuong-Le, T., Nguyen, K. D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020a), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  35. Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condensed Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
  36. Cuong-Le, T., Nguyen, K.D., Lee, J., Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnology, 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9
  37. Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020b), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38(2022), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
  38. Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631.
  39. Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127.
  40. Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin-Wall. Struct., 146, 106468. https://doi.org/10.1016/j.tws.2019.106468.
  41. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/SEM.2022.81.2.179.
  42. Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029.
  43. Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X. (2020), "Free vibration of functionally graded sandwich plates based on nth-order shear deformation theory via differential quadrature method", J. Sandw. Struct. Mater. 22, 1660-1680. https://doi.org/10.1177/1099636218809451.
  44. Funari, M.F., Greco, F. and Lonetti, P. (2018), "Sandwich panels under interfacial debonding mechanisms", Compos. Struct., 203, 310-320, https://doi.org/10.1016/j.compstruct.2018.06.113.
  45. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
  46. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020), "Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects", Mech. Based Des. Struct. Mach. 1-15. https://doi.org/10.1080/15397734.2020.1814157.
  47. Ghorbanpour, A.A., Shiravand, A., Rahi, M. and Kolahchi, R. (2012), "Nonlocal vibration of coupled DLGS systems embedded on Visco-Pasternak foundation", Physica. B, 407, 4123-4131. http://dx.doi.org/10.1016/j.physb.2012.06.035.
  48. Hadji, L., (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
  49. Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62 https://doi.org/10.12989/cme.2022.4.1.043.
  50. Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/ANR.2022.12.1.101.
  51. Kar, V.R. and Panda, S.K. (2020), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  52. Khatir, S., Tiachacht, S., Thanh, C.L., Ghandourah, E., Mirjalili, S. and Abdel Wahab, M. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273(2021), 114287. https://doi.org/10.1016/j.compstruct.2021.114287.
  53. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
  54. Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/SEM.2022.82.4.477.
  55. Kurpa. L.V., and Shmatko, T.V. (2020), "Buckling and free vibration analysis of functionally graded sandwich plates and shallow shells by the Ritz method and the R-functions theory", Proc. Inst. Mech. Eng. Part C. J. Mec.h Eng. Sci., 1-12. https://doi.org/10.1177/0954406220936304.
  56. Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/ANR.2022.13.1.047.
  57. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  58. Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/SCS.2021.39.5.493.
  59. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/SEM.2020.75.5.633.
  60. Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  61. Madenci, E., Ozkili, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  62. Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/CAC.2022.30.2.151.
  63. Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin Wall. Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.
  64. Mantari, J.L., Granados, E.V. (2014), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos. Part B, 69, 317-334. https://doi.org/10.1016/j.compositesb.2014.10.009.
  65. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  66. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions", J. Sandw. Struct. Mater., 109963621985128. https://doi.org/10.1177/1099636219851281.
  67. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
  68. Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023.
  69. Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 102(2), e202100287. https://doi.org/10.1002/zamm.202100287
  70. Oner, E., Yaylaci, M. and Birinci, A. (2014), "Solution of a receding contact problem using an analytical method and a finite element method", J. Mech. Mater. Struct., 9(3), 333-345. https://doi.org/10.2140/jomms.2014.9.333.
  71. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  72. Panda, S.K. and Singh, B.N. (2013), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aeros. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007.
  73. Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/CAC.2022.29.4.247.
  74. Pradhan, S.C. and Kumar, A. (2010), "Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method", Comput. Mater. Sci., 50(1), 1-245. https://doi.org/10.1016/j.commatsci.2010.08.009.
  75. Qu, Y. and Meng, G, (2017), "Nonlinear vibro-acoustic analysis of composite sandwich plates with skin-core debondings", AIAA J., 55(5), 1723-1733, https://doi.org/10.2514/1.J055489.
  76. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
  77. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. http://dx.doi.org/10.12989/cac.2019.23.5.361.
  78. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  79. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/SCS.2022.43.5.603.
  80. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225-238. https://doi.org/10.12989/SEM.2020.73.3.225.
  81. Sahu, P., Sharma, N. and Panda, S. K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct., 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
  82. Sayyad, A. and Ghumare, S. (2019), "A new quasi-3D model for functionally graded plates", J. Appl. Comput. Mech., 5(2), 367-380. https://doi.org/10.22055/JACM.2018.26739.1353.
  83. Seguel, F. and Meruane, V. (2018), "Damage assessment in a sandwich panel based on full-field vibration measurements", J. Sound. Vib., 417(17), 1-18, https://doi.org/10.1016/j.jsv.2017.11.048.
  84. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
  85. Singh, S.J. and Harsha, S.P. (2020a), "Nonlinear vibration analysis of sigmoid functionally graded sandwich plate with ceramic-FGM-Metal layers", J. Vib. Eng. Technol., 8, 67-84. https://doi.org/10.1007/s42417- 018-0058-8.
  86. Singh, S.J. and Harsha, S.P. (2020b), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin-Wall. Struct. 150, 106668. https://doi.org/10.1016/j.tws.2020.106668.
  87. Singh, V.K. and Panda, S.K. (2014), "Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels", Thin-Wall. Struct., 85, 341-349. https://doi.org/10.1016/j.tws.2014.09.003.
  88. Singh. S.J., Nataraj, C. and Harsha, S.P. (2020), "Nonlinear dynamic analysis of a sandwich plate with S-FGM face sheets and homogeneous core subjected to harmonic excitation", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636220904338.
  89. Sobhy, M. and Zenkour, A.M. (2015), "Thermodynamical bending of FGM sandwich plates resting on Pasternak's elastic foundations", Adv. Appl. Mathem. Mech., 7(1), 116-134. https://doi.org/10.4208/aamm.2013.m143.
  90. Szekrenyes, A. (2018), "The role of transverse stretching in the delamination fracture of soft core sandwich plates", Appl Math Model., 63, 611-632, https://doi.org/10.1016/j.apm.2018.07.014.
  91. Thai, C.H., Zenkour, A., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis", Compos. Struct. 139, 77-95. https://doi.org/10.1016/j.compstruct.2015.11.066.
  92. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Europ. J. Mech. A/Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  93. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  94. Wang, B., Wu, L., Jin, X., Du, S., Sun, Y. and Ma, L. (2010), "Experimental investigation of 3D sandwich structure with core reinforced by composite columns", Mater. Des., 31(1), 158-165. https://doi.org/10.1016/j.matdes.2009.06.039.
  95. Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/ANR.2022.12.6.617.
  96. Yahea, H.T. and Majeed, W.I. (2021), "Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory", Compos. Mater. Eng., 3(3), 179-199. https://doi.org/10.12989/cme.2021.3.3.179.
  97. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020b), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
  98. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org10.12989/sem.2016.57.6.1143.
  99. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  100. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  101. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D. M. and Birinci, A. (2022a), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/SCS.2022.43.5.661.
  102. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D. M. and Birinci, A. (2022b), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Archiv. Appl. Mech., 92(6), 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  103. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2020a), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  104. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  105. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Yaylaci, E. U., Oner, E., & Birinci, A. (2021b), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  106. Yaylaci, M., Sabano, B. S., Ozdemir, M.E. and Birinci, A. (2022c), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  107. Yaylaci, M., Yayli, M., Yaylaci, E. U., Olmez, H. and Birinci, A. (2021c), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech, 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  108. Ye, R., Zhao, N., Yang, D., Cui, J., Gaidai, O. and Ren, P. (2020), "Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higher-order analysis model", J. Sandw. Struct. Mater. 109963622090976. https://doi.org/10.1177/1099636220909763.
  109. Yeh, J.Y. (2013), "Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment", Smart Mater. Struct., 22(3), 035010. https://doi.org/10.1088/0964-1726/22/3/035010.
  110. Zenkour, A.M., (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solids Struct., 42, 5224-5242, https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  111. Zhu, F-Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.