• Title/Summary/Keyword: 2-vertex connected graphs

Search Result 26, Processing Time 0.208 seconds

ON TWO GRAPH PARTITIONING QUESTIONS

  • Rho, Yoo-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.847-856
    • /
    • 2005
  • M. Junger, G. Reinelt, and W. R. Pulleyblank asked the following questions ([2]). (1) Is it true that every simple planar 2-edge connected bipartite graph has a 3-partition in which each component consists of the edge set of a simple path? (2) Does every simple planar 2-edge connected graph have a 3-partition in which every component consists of the edge set of simple paths and triangles? The purpose of this paper is to provide a positive answer to the second question for simple outerplanar 2-vertex connected graphs and a positive answer to the first question for simple planar 2-edge connected bipartite graphs one set of whose bipartition has at most 4 vertices.

GENERALIZED CAYLEY GRAPHS OF RECTANGULAR GROUPS

  • ZHU, YONGWEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1169-1183
    • /
    • 2015
  • We describe generalized Cayley graphs of rectangular groups, so that we obtain (1) an equivalent condition for two Cayley graphs of a rectangular group to be isomorphic to each other, (2) a necessary and sufficient condition for a generalized Cayley graph of a rectangular group to be (strong) connected, (3) a necessary and sufficient condition for the colour-preserving automorphism group of such a graph to be vertex-transitive, and (4) a sufficient condition for the automorphism group of such a graph to be vertex-transitive.

PLANE EMBEDDING PROBLEMS AND A THEOREM FOR INFINITE MAXIMAL PLANAR GRAPHS

  • JUNG HWAN OK
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.643-651
    • /
    • 2005
  • In the first part of this paper we investigate several statements concerning infinite maximal planar graphs which are equivalent in finite case. In the second one, for a given induced $\theta$-path (a finite induced path whose endvertices are adjacent to a vertex of infinite degree) in a 4-connected VAP-free maximal planar graph containing a vertex of infinite degree, a new $\theta$-path is constructed such that the resulting fan is tight.

AN EFFICIENT ALGORITHM TO SOLVE CONNECTIVITY PROBLEM ON TRAPEZOID GRAPHS

  • Ghosh, Prabir K.;Pal, Madhumangal
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.141-154
    • /
    • 2007
  • The connectivity problem is a fundamental problem in graph theory. The best known algorithm to solve the connectivity problem on general graphs with n vertices and m edges takes $O(K(G)mn^{1.5})$ time, where K(G) is the vertex connectivity of G. In this paper, an efficient algorithm is designed to solve vertex connectivity problem, which takes $O(n^2)$ time and O(n) space for a trapezoid graph.

MONOPHONIC PEBBLING NUMBER OF SOME NETWORK-RELATED GRAPHS

  • AROCKIAM LOURDUSAMY;IRUDAYARAJ DHIVVIYANANDAM;SOOSAIMANICKAM KITHER IAMMAL
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.77-83
    • /
    • 2024
  • Chung defined a pebbling move on a graph G as the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The monophonic pebbling number guarantees that a pebble can be shifted in the chordless and the longest path possible if there are any hurdles in the process of the supply chain. For a connected graph G a monophonic path between any two vertices x and y contains no chords. The monophonic pebbling number, µ(G), is the least positive integer n such that for any distribution of µ(G) pebbles it is possible to move on G allowing one pebble to be carried to any specified but arbitrary vertex using monophonic a path by a sequence of pebbling operations. The aim of this study is to find out the monophonic pebbling numbers of the sun graphs, (Cn × P2) + K1 graph, the spherical graph, the anti-prism graphs, and an n-crossed prism graph.

FORBIDDEN THETA GRAPH, BOUNDED SPECTRAL RADIUS AND SIZE OF NON-BIPARTITE GRAPHS

  • Shuchao Li;Wanting Sun;Wei Wei
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.959-986
    • /
    • 2023
  • Zhai and Lin recently proved that if G is an n-vertex connected 𝜃(1, 2, r + 1)-free graph, then for odd r and n ⩾ 10r, or for even r and n ⩾ 7r, one has ${\rho}(G){\leq}{\sqrt{{\lfloor}{\frac{n^2}{4}}{\rfloor}}}$, and equality holds if and only if G is $K_{{\lceil}{\frac{n}{2}}{\rceil},{\lfloor}{\frac{n}{2}}{\rfloor}}$. In this paper, for large enough n, we prove a sharp upper bound for the spectral radius in an n-vertex H-free non-bipartite graph, where H is 𝜃(1, 2, 3) or 𝜃(1, 2, 4), and we characterize all the extremal graphs. Furthermore, for n ⩾ 137, we determine the maximum number of edges in an n-vertex 𝜃(1, 2, 4)-free non-bipartite graph and characterize the unique extremal graph.

DISTINGUISHING NUMBER AND DISTINGUISHING INDEX OF STRONG PRODUCT OF TWO GRAPHS

  • Alikhani, Saeid;Soltani, Samaneh
    • Honam Mathematical Journal
    • /
    • v.42 no.4
    • /
    • pp.645-651
    • /
    • 2020
  • The distinguishing number (index) D(G) (D'(G)) of a graph G is the least integer d such that G has an vertex labeling (edge labeling) with d labels that is preserved only by a trivial automorphism. The strong product G ☒ H of two graphs G and H is the graph with vertex set V (G) × V (H) and edge set {{(x1, x2),(y1, y2)}|xiyi ∈ E(Gi) or xi = yi for each 1 ≤ i ≤ 2.}. In this paper we study the distinguishing number and the distinguishing index of strong product of two graphs. We prove that for every k ≥ 2, the k-th strong power of a connected S-thin graph G has distinguishing index equal two.

On Diameter, Cyclomatic Number and Inverse Degree of Chemical Graphs

  • Sharafdini, Reza;Ghalavand, Ali;Ashrafi, Ali Reza
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.467-475
    • /
    • 2020
  • Let G be a chemical graph with vertex set {v1, v1, …, vn} and degree sequence d(G) = (degG(v1), degG(v2), …, degG(vn)). The inverse degree, R(G) of G is defined as $R(G)={\sum{_{i=1}^{n}}}\;{\frac{1}{deg_G(v_i)}}$. The cyclomatic number of G is defined as γ = m - n + k, where m, n and k are the number of edges, vertices and components of G, respectively. In this paper, some upper bounds on the diameter of a chemical graph in terms of its inverse degree are given. We also obtain an ordering of connected chemical graphs with respect to the inverse degree.

On the Metric Dimension of Corona Product of a Graph with K1

  • Mohsen Jannesari
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.123-129
    • /
    • 2023
  • For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected graph G, the k-vector r(v|W) = (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the metric representation of v with respect to W, where d(x, y) is the distance between the vertices x and y. A set W is called a resolving set for G if distinct vertices of G have distinct metric representations with respect to W. The minimum cardinality of a resolving set for G is its metric dimension dim(G), and a resolving set of minimum cardinality is a basis of G. The corona product, G ⊙ H of graphs G and H is obtained by taking one copy of G and n(G) copies of H, and by joining each vertex of the ith copy of H to the ith vertex of G. In this paper, we obtain bounds for dim(G ⊙ K1), characterize all graphs G with dim(G ⊙ K1) = dim(G), and prove that dim(G ⊙ K1) = n - 1 if and only if G is the complete graph Kn or the star graph K1,n-1.

A LOWER BOUND FOR THE CONVEXITY NUMBER OF SOME GRAPHS

  • Kim, Byung-Kee
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.185-191
    • /
    • 2004
  • Given a connected graph G, we say that a set EC\;{\subseteq}\;V(G)$ is convex in G if, for every pair of vertices x, $y\;{\in}\;C$, the vertex set of every x - y geodesic in G is contained in C. The convexity number of G is the cardinality of a maximal proper convex set in G. In this paper, we show that every pair k, n of integers with $2\;{\leq}k\;{\leq}\;n\;-\;1$ is realizable as the convexity number and order, respectively, of some connected triangle-free graph, and give a lower bound for the convexity number of k-regular graphs of order n with n > k+1.