• Title/Summary/Keyword: 2-d numerical model

Search Result 1,337, Processing Time 0.032 seconds

Comparison of Shallow Model Tunnel Test Using Image Processing and Numerical Analysis (이미지 프로세싱을 이용한 얕은 터널 모형실험과 수치해석의 비교)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2006
  • In this study, 2D shallow tunnel model test using close range photogrammetric technique was conducted with aluminium rods simulating continuum granular material. Numerical analysis was also carried out in order to identify the behaviour of subsurface deformations caused by shallow tunnelling. Direction and magnitude of displacement vectors from the model test were identical to the result of numerical analysis based on the model data. In particular, it is shown that the vector direction was toward a point below the tunnel invert level. A narrow "chimney or tulip like" pattern of vertical displacement was confirmed by both the model test and numerical analysis. This behaviour is consistent with the field data. In addition to the qualitative comparison, the quantitative result of subsurface settlements according to 2D volume loss showed good agreement between the model test and numerical analysis. Therefore, close range photogrammetric technique applied in the model test may be used to validate the result from the continuum numerical analysis.

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

Verification of Numerical Analysis Technique of Dynamic Response of Seabed Induced by the Interaction between Seabed and Wave (파랑-지반 상호작용에 의한 해저지반의 동적응답 수치해석법 검증)

  • Kang, Gi-Chun;Kim, Sung-Woung;Kim, Tae-Hyung;Kim, Do-Sam;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.5-14
    • /
    • 2015
  • Seabed may undergo large excess pore water pressure in the case of long duration of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. Thus, it is necessary to develop a numerical technique which can precisely evaluate the dynamic response of seabed due to wave action. In this study, a new numerical technique named mixed model (2D NIT & FLIP models) was proposed. The dynamic wave pressure and water flow velocity acting on the boundary between seabed and the wave field was estimated using 2D-NIT model. This result was used as input data in FLIP program for investigation of dynamic response of seabed. To secure the reliability of the mixed model, the numerical analysis results of the mixed model were compared with Yamamoto's solution and Chang's experiment results. The comparison results indicated that there were some differences between them, but the general trend of the effective stress increment and the excess pore water pressure along the depth of seabed was similar to each other. Thus, this study clearly supports the plausibility of the numerical analysis of the mixed model.

Numerical simulation of advection-diffusion on flow in waste stabilization ponds (1-dimension) with finite difference method forward time central space scheme

  • Putri, Gitta Agnes;Sunarsih, Sunarsih;Hariyanto, Susilo
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.442-448
    • /
    • 2018
  • This paper presents the numerical simulation of advection-diffusion mechanism of BOD concentration which was used as an indicator of waste only in one flow-direction of waste stabilization ponds (1-dimension (1-D)). This model was represented in partial differential equation order 2. The purpose of this paper was to determine the simulation of the model 1-D of wastewater transport phenomena based advection-diffusion mechanism and did validate the model. Numerical methods which was used for the solution of this model is finite difference method with Forward Time Central Space scheme. The simulation results which was obtained would be compared with field observation data as a validation model. Collection of field data was carried out in the Wastewater Treatment Plant Sewon, Bantul, D.I. Yogyakarta. The results of numerical simulations were indicate that the advection-diffusion mechanism takes place continuously over time. Then validation of the model was state that there was a difference between the calculation results with the field data, with a correlation value of 0.998.

DEVELOPMENT OF EULERIAN-GRANULAR MODEL FOR NUMERICAL SIMULATION MODEL OF PARTICULATE FLOW (Eulerian-Granular method를 사용한 고체 입자 유동 모델 개발)

  • Lee, T.G.;Shin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we have developed numerical model for particulated flow through narrow slit using Eulerian-Granular method. Commercial software (FLUENT) was utilized as simulation tool and main focus was to identify the effect from various numerical options for modeling of solid particles as continuos phase in granular flow. Gidaspow model was chosen as basic model for solid viscosity and drag model. And lun-et-al model was used as solid pressure and radial distribution model, respectively. Several other model options in FLUENT were tested considering the cross related effect. Mass flow rate of the particulate through the slit was measured to compare. Due to the high volume density of the stacked particulates above the slit, effect from various numerical options were not significant. The numerical results from basic model were also compared with experimental results and showed very good agreement. The effects from the characteristics of particles such as diameter, angle of internal friction, and collision coefficient were also analyzed for future design of velocity resistance layer in solar thermal absorber. Angle of internal friction was found to be the dominat variable for the particle mass flow rate considerably. More defined 3D model along with energy equation for complete solar thermal absorber design is currently underway.

Analysis on Dimensional Stability of Porosity Soil Block for Vegetation Reinforcement (식생강화를 위한 다공성 소일 블록의 치수안정성 해석)

  • Park, Sang Woo;Ahn, Tae Jin;Ahn, Sang Ho;Kwon, Soon Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.91-103
    • /
    • 2013
  • In this Research, in order to improve problems of not enough technical validation and structural and hydraulic stability evaluation when nature-friendly revetment block is applied to field, hydraulic stability evaluation according to hydraulic behavior change of porosity soil block for vegetation reinforcement that secures ecological function was reviewed. By selecting object section, numerical analysis and hydraulic model experiments were performed; for numerical analysis, by using 1-dimensional numerical analysis model HEC-RAS and 2-dimensional numerical analysis RMA-2, one-dimensional(1D) and two-dimensional(2D) numerical analysis were performed; by applying Froude's similarity law, reduced-scale hydraulic model experiments according to vegetation existence were performed. In hydraulic model experiment, for validity of experiment result, the result of velocity and tractive force of reduced-scale hydraulic model experiments was converted to prototype so that it can be compared and reviewed under the same condition of one-dimensional(1D) and two-dimensional(2D) numerical analysis result; as a result, it was confirmed that comparatively united result appeared, and by comparing prototype-converted tractive force result with revetment's allowable tractive force coming from an existing research, block's hydraulic stability was suggested.

Application of Three-Dimensional Numerical Irregular wave Tank(3D-NIT) Model (3차원 불규칙 수치파동수조(3D-NIT) 모델의 적용성에 관한 연구)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.388-397
    • /
    • 2012
  • In this study, 3D-NIT(3-Dimensional Numerical Irregular wave Tank) model in which regular wave as well as stable irregular wave can be generated in 3-dimensional numerical irregular wave tank was proposed. To verify validity, the following steps need to be conducted: 1) comparative analysis between calculated waveforms and targeted waveforms at the wave generating point, 2) comparative analysis with the existing experimental values of overtopping volume estimated, targeting shore protection structures installed on a slope bed, 3) comparison with the existing numerical and hydraulic experimental results through application in the analysis on the wave deformation by structures and wave force acting on the vertical cylindrical structures. Based on the results, characteristics of the breaking wave forces according to incident waves and interval distance of structures were identified through application of 3D-NIT model in the analysis on the breaking wave forces acting on the cylindrical structures installed on a slope bed, and reflection and overtopping was reviewed through application in the special breakwaters on the domestic fields. The numerical results obtained the 3D-NIT model are in good agreement with experimental results, and its applicaion to the complex-shpaed coastal structures is verified.

2D numerical modeling of icebreaker advancing in ice-covered water

  • Sawamura, Junji
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.385-392
    • /
    • 2018
  • This paper presents 2D numerical modeling to calculate ship-ice interactions that occur when an icebreaker advances into ice-covered water. The numerical model calculates repeated icebreaking of an ice plate and removal of small ice floes. The icebreaking of the ice plate is calculated using a ship-ice contact detection technique and fluid-structural interaction of ice plate bending behavior. The ship-ice interactions in small ice floes are calculated using a physically based modeling with 3DOF rigid body equations. The ice plate is broken in crushing, bending, and splitting mode. The ice floes drift by wind or current and by the force induced by the ship-ice interaction. The time history of ice force and ice floe distribution when an icebreaker advances into the ice-covered water are obtained numerically. Numerical results demonstrate that the time history of ice force and distribution of ice floes (ice channel width) depend on the ice floe size, ship motion and ice drifting by wind or current. It is shown that the numerical model of ship maneuvering in realistic ice conditions is necessary to obtain precise information about the ship in ice-covered water. The proposed numerical model can be useful to provide data of a ship operating in ice-covered water.

Numerical Analysis of Rainfall Induced Landslide Dam Formation

  • Do, Xuan Khanh;Regmi, Ram Krishna;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.245-245
    • /
    • 2015
  • In the recent years, due to long-lasting heavy rainfall events, a large number of landslides have been observed in the mountainous area of the world. Such landslides can also form a dam as it blocks the course of a river, which may burst and cause a catastrophic flood. Numerical analysis of landslide dam formation is rarely available, while laboratory experimental studies often use assumed shape to analyze the landslide dam failure and flood hydraulics in downstream. In this study, both experimental and numerical studies have been carried out to investigate the formation of landslide dam. Two case laboratory experiments were conducted in two flumes simultaneously. The first flume (2.0 m 0.6 m 0.5 m) was set at $22^{\circ}$ and $27^{\circ}$ slope to generate the landslide using rainfall intensity of 70.0 mm/hr. On the other hand, the second flume (1.5 m 0.25 m 0.3 m) was set perpendicularly at the downstream end of the first flume to receive the landslide mass forming landslide dam. The formation of landslide dam was observed at $15^{\circ}$ slope of the second flume. The whole processes including the landslide initiation and movement of the landslide mass into the second channel was captured by three digital cameras. In numerical analysis, a two-dimensional (2D) seepage flow model, a 2D slope stability model (Spencer method) and a 2D landslide dam-geometry evaluation model were coupled as a single unit. This developed model can determine the landslide occurrence time, the failure mass and the geometry of landslide dam deposited in the second channel. The data obtained from numerical simulation results has good agreement with the experimental measurements.

  • PDF

A Study on the Model of Thermal Plume Flow in the Forest Fire (산불에 의한 열적상승유동 해석에 관한 연구)

  • Park, Jun-Sang;Ji, Young-Moo;Jun, Hyang-Sig;Jeon, Dae-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • A study is made of thermal plume flow model for the development of helicopter simulator over the forest fire. For the numerical analysis, a line fire model with Boussinesq fluid approximation, which is idealized by the spreading shape of forest fire on the ground, is adopted. Comparing full 2-D and 3-D numerical solutions with 2-D similarity solution, it has been built a new model that is useful for temperature prediction along the symmetric vertical axis of fire model for both cases of laminar and turbulent flow.