References
- Metcalf & Eddy, Inc. Wastewater engineering: Treatment disposal reuse. New York: McGraw-Hill Publishing Company; 1997.
- Beran B, Kargi K. A dynamic mathematical model for waste water stabilization ponds. Eco. Mod. 2005;181:39-57. https://doi.org/10.1016/j.ecolmodel.2004.06.022
- Kayombo S, Mbwette TSA, Katima JHY, Jorgensen SE. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds. Water Res. 2003;37:2937-2943. https://doi.org/10.1016/S0043-1354(03)00014-9
- James A. An introduction to water quality modelling. England: John Wiley & Sons; 1993.
- Sunarsih, Purwanto, Budi WS. Mathematical modeling regime steady state for domestic wastewater treatment facultative stabilization ponds. J. Urb. Environ. Eng. 2013;7:293-301. https://doi.org/10.4090/juee.2013.v7n2.293301
- Mayo AW, Abbas M. Removal mechanisms of nitrogen in waste stabilization ponds. Phys. Chem. Earth. 2014;72-75:77-82. https://doi.org/10.1016/j.pce.2014.09.011
- Gao G, Falconer RA, Lin B. Modelling the fate and transport of faecal bacteria in estuarine and coastal waters. Mar. Pollut. Bull. 2005;100:162-168.
- Thongmoon M, McKibbin R, Tangmanee R. Numerical solution of a 3-D advection-dispersion model for pollutant transport. Thai J. Math. 2007;5:91-108.
- Rubio AD, Zalts A, Hasi CDE. Numerical solution of the advection-reaction-diffusion equation at different scales. Environ. Modell. Softw. 2008;23:90-95. https://doi.org/10.1016/j.envsoft.2007.05.009
- Prieto FU, Munoz JJB, Corvinos LG. Application of the generalized finite difference method to solve the advection-diffusion equation. J. Comput. Appl. Math. 2011;235:1849-1855. https://doi.org/10.1016/j.cam.2010.05.026
- Sousa E. A second order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 2012;64:3141-3152. https://doi.org/10.1016/j.camwa.2012.03.002
- Sousa E. An explicit high order method for fractional advection diffusion equations. J. Comput. Phys. 2014;278:257-274. https://doi.org/10.1016/j.jcp.2014.08.036
- Thongmoon M, McKibbin R. A comparison of some numerical methods for the advection-diffusion equation. Res. Lett. Inf. Math. Sci. 2006;10:49-62.
- Najafi HS, Hajinezhad H. Solving one-dimensional advection-dispersion with reaction using some finite-difference methods. Appl. Math. Sci. 2008;2:2611-2618.
- Appadu AR, Djoko JK, Gidey HH. A computational study of three numerical methods for some advection-diffusion problems. Appl. Math. Comput. 2016;272:629-647.
- Welty JR, Wicks CE, Wilson RE, Rorrer G. Fundamentals of momentum, heat and mass transfer. 4th Ed. New York: John Wiley & Sons; 2001.
- White FM. Fluid mechanics. Boston: WCB McGraw-Hi; 1998.
- Strauss W. Partial differential equations. United States of America: John Wiley & Sons; 2008.
- Subiyanto, Ahmad MF, Mamat M, Husain ML. Comparison of numerical method for forward and backward time centered space for long-term simulation of shoreline evolution. Appl. Math. Sci. 2013;7:5165-5173.
- Atkinson K. Elementary numerical analysis. New York: John Wiley & Sons; 1985.
Cited by
- Macrobiont: Cradle for the Origin of Life and Creation of a Biosphere vol.10, pp.11, 2018, https://doi.org/10.3390/life10110278