• 제목/요약/키워드: 2-Basis

검색결과 14,694건 처리시간 0.044초

삼항 기약다항식 기반의 저면적 Shifted Polynomial Basis 비트-병렬 곱셈기 (Low Space Complexity Bit-Parallel Shifted Polynomial Basis Multipliers using Irreducible Trinomials)

  • 장남수;김창한
    • 정보보호학회논문지
    • /
    • 제20권5호
    • /
    • pp.11-22
    • /
    • 2010
  • 최근 Fan과 Dai는 이진체 곱셈기의 효율성을 개선하기 위하여 Shifted Polynomial Basis(SPB)를 제안하고 이를 이용한 non-pipeline 비트-병렬 곱셈기를 제안하였다. SPB는 PB에 {1, ${\alpha}$, $\cdots$, ${\alpha}^{n-l}$}에 ${\alpha}^{-\upsilon}$를 곱한 것으로, 이 둘 사이는 매우 적은 비용으로 쉽게 기저 변환이 된다. 이후 삼항 기약다항식 $f(x)=x^n+x^k+1$을 사용하여 Modified Shifted Polynomial Basis(MSPB) 기반의 SPB 비트-병렬 Mastrovito type I과 type II 곱셈기가 제안되었다. 본 논문에서는 SPB를 이용한 비트-병렬 곱셈기를 제안한다. n ${\neq}$ 2k 일 때 제안하는 곱셈기 구조는 기존의 모든 SPB 곱셈기와 비교하여 효율적인 공간 복잡도를 가진다. 또한, 기존의 가장 작은 공간 복잡도를 가지는 곱셈기와 비교하여 1 ${\leq}$ k ${\leq}$ (n+1)/3인 경우 항상 효율적이다. 또한, (n+2)/3 $\leq$ k < n/2인 경우에도 일분 경우를 제외하고 기존 결과보다 항상 작은 공간 복잡도를 가진다.

GRӦBNER-SHIRSHOV BASIS AND ITS APPLICATION

  • Oh, Sei-Qwon;Park, Mi-Yeon
    • 충청수학회지
    • /
    • 제15권2호
    • /
    • pp.97-107
    • /
    • 2003
  • An efficient algorithm for the multiplication in a binary finite filed using a normal basis representation of $F_{2^m}$ is discussed and proposed for software implementation of elliptic curve cryptography. The algorithm is developed by using the storage scheme of sparse matrices.

  • PDF

NEW SELECTION APPROACH FOR RESOLUTION AND BASIS FUNCTIONS IN WAVELET REGRESSION

  • Park, Chun Gun
    • Korean Journal of Mathematics
    • /
    • 제22권2호
    • /
    • pp.289-305
    • /
    • 2014
  • In this paper we propose a new approach to the variable selection problem for a primary resolution and wavelet basis functions in wavelet regression. Most wavelet shrinkage methods focus on thresholding the wavelet coefficients, given a primary resolution which is usually determined by the sample size. However, both a primary resolution and the basis functions are affected by the shape of an unknown function rather than the sample size. Unlike existing methods, our method does not depend on the sample size and also takes into account the shape of the unknown function.

Standard Basis를 기반으로 하는 유한체내 고속 GF($2^m$) 곱셈기 설계 (A High speed Standard Basis GF(2$^{m}$ ) Multiplier with A Known Primitive Coefficient Set)

  • 최성수;이영규;박민경;김기선
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.333-336
    • /
    • 1999
  • In this paper, a new high speed parallel input and parallel output GF(2$^{m}$ ) multiplier based on standard basis is proposed. The concept of the multiplication in standard basis coordinates gives an easier VLSI implementation than that of the dual basis. This proposed algorithm and method of implementation of the GF(2$^{m}$ ) multiplication are represented by two kinds of basic cells (which are the generalized and fixed basic cell), and the minimum critical path with pipelined operation. In the case of the generalized basic cell, the proposed multiplier is composed of $m^2$ basic cells where each cell has 2 two input AND gates, 2 two input XOR gates, and 2 one bit latches Specifically, we show that the proposed multiplier has smaller complexity than those proposed in 〔5〕.

  • PDF

Interval 제 2 종 퍼지 radial basis function neural network (Interval type-2 fuzzy radial basis function neural network)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF

알고리즘 레벨 유한체 연산에 대한 최적화 연구 (Optimization Techniques for Finite field Operations at Algorithm Levels)

  • 문상국
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.651-654
    • /
    • 2008
  • $GF(2^m)$를 기본으로 하는 유한체 연산에서 덧셈과 뺄셈은 그 구현이 단순하지만, 곱셈, 나눗셈이나 역원을 구하는 데에는 수학적으로 복잡한 수식을 간략화 하는 과정이 필수적이다. 유한체 연산은 기본적으로 normal basis와 polynomial basis 두 가지 측면에서 접근할 수 있고 이 두 방법은 각각 장단점을 가지고 있다. 본 연구에서는 두 가지 basis 중에서 수학적인 접근이 용이한 polynomial basis를 사용한 접근방식을 채택하여 수학적인 원리를 이용한 수식의 간략화를 꾀하고 최적화하는 방법을 제시한다.

  • PDF

On the Basis Number of the Semi-Strong Product of Bipartite Graphs with Cycles

  • Jaradat, M.M.M.;Alzoubi, Maref Y.
    • Kyungpook Mathematical Journal
    • /
    • 제45권1호
    • /
    • pp.45-53
    • /
    • 2005
  • A basis of the cycle space C (G) is d-fold if each edge occurs in at most d cycles of C(G). The basis number, b(G), of a graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space. MacLane proved that a graph G is planar if and only if $b(G)\;{\leq}\;2$. Schmeichel showed that for $n\;{\geq}\;5,\;b(K_{n}\;{\bullet}\;P_{2})\;{\leq}\;1\;+\;b(K_n)$. Ali proved that for n, $m\;{\geq}\;5,\;b(K_n\;{\bullet}\;K_m)\;{\leq}\;3\;+\;b(K_n)\;+\;b(K_m)$. In this paper, we give an upper bound for the basis number of the semi-strong product of a bipartite graph with a cycle.

  • PDF

The Basis Number of the Cartesian Product of a Path with a Circular Ladder, a Möbius Ladder and a Net

  • Alzoubi, Maref Y.;Jaradat, Mohammed M.M.
    • Kyungpook Mathematical Journal
    • /
    • 제47권2호
    • /
    • pp.165-714
    • /
    • 2007
  • The basis number of a graph G is the least positive integer $k$ such that G has a $k$-fold basis. In this paper, we prove that the basis number of the cartesian product of a path with a circular ladder, a M$\ddot{o}$bius ladder and path with a net is exactly 3. This improves the upper bound of the basis number of these graphs for a general theorem on the cartesian product of graphs obtained by Ali and Marougi, see [2]. Also, by this general result, the cartesian product of a theta graph with a M$\ddot{o}$bius ladder is at most 5. But in section 3 we prove that it is at most 4.

  • PDF

The Basis Number of the Lexicographic Product of Different Ladders with Paths and Cycles

  • Alzoubi, Maref Yousef Mohammad;Al-Ta'Ani, Reem Rafe' Ayed
    • Kyungpook Mathematical Journal
    • /
    • 제48권2호
    • /
    • pp.303-315
    • /
    • 2008
  • In [8] M. Y. Alzoubi and M. M. Jaradat studied the basis number of the composition of paths and cycles with Ladders, Circular ladders and M$\"{o}$bius ladders. Namely, they proved that the basis number of these graphs is 4 except possibly for some cases in each of them. Since the lexicographic product is noncommutative, in this paper we investigate the basis number of the lexicographic product of the different kinds of ladders with paths and cycles. In fact, we prove that the basis number of almost all of these graphs is 4.