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Abstract. In [8] M. Y. Alzoubi and M. M. Jaradat studied the basis number of the com-

position of paths and cycles with Ladders, Circular ladders and Möbius ladders. Namely,

they proved that the basis number of these graphs is 4 except possibly for some cases in

each of them. Since the lexicographic product is noncommutative, in this paper we inves-

tigate the basis number of the lexicographic product of the different kinds of ladders with

paths and cycles. In fact, we prove that the basis number of almost all of these graphs is

4.

1. Introduction

Throughout this paper, we consider only finite connected simple graphs. We
use standard notations and terminology, and for undefined terms we refer the reader
to [10] and [16].

Let G be a graph with n vertices and m edges. If we order the edges
e1, e2, · · · , em then G is associated with a vector space as follows: If A is a subset
of edges from G, then it corresponds to a (0, 1)-vector (a1, a2, · · · , am) such that
ai = 1 if ei ∈ A, and ai = 0 if ei /∈ A. These vectors form an m-dimensional vector
space over the field Z2. The subspace generated by all the vectors that correspond
to all the cycles of G is called the cycle space of G, which is denoted by C(G). The
dimension is dim C(G) = m − n + 1. Usually, we say that the cycles themselves,
rather than the vectors corresponding to the cycles, generate C(G). A basis for the
cycle space C(G) of a graph G is called a k − fold if each edge of G occurs in at
most k of the cycles in the basis. The basis number of G, denoted by b(G), is the
smallest integer k such that C(G) has a k − fold basis.

The first important result about the basis number was given in 1937 by MacLane
[17] when he proved the following theorem.

Theorem 1.1(MacLane,[17]). A graph G is planar if and only if b (G) ≤ 2.

In [18] Schmeichel investigated the basis number of certain important classes
of non-planar graphs, specifically, complete graphs and complete bipartite graphs.
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Then J. Banks and E. Schemeichel [9] proved that for n ≥ 7, the basis number of
Qn is 4, where Qn is the n-cube. After that, many researchers were attracted to
work on finding the basis number of special classes of graphs, mainly, those obtained
from different kinds of graph products. We refer interested readers to [1-8], [11-15]
and their references.

The following lemmas will be used frequently in our main proofs.

Lemma 1.1(Hailat-Alzoubi[11]). Let G be a graph with p vertices and q edges. If
|C| denotes the length of the cycle C, and B = {C1, C2, · · · , Cd : |Ci| ≥ r} be a

k-fold basis of C (G) then rd ≤
d∑

i=1

|Ci| ≤ kq, where d = dim C (G).

Lemma 1.2(Jaradat-Alzoubi-Rawashdeh, [13]). Let A, B be sets of cycles of a
graph G, and suppose that both A and B are linearly independent, and E (A)∩E (B)
induces a forest in G (with the possibility that E (A) ∩ E (B) = φ). Then A ∪B is
linearly independent.

Definition 1.1. The lexicographic product (composition) of two disjoint graphs
G1 = (V1, E1) and G2 = (V2, E2) is denoted by G1 [G2] or G1 ⊗G2. It has V (G) =
V1 × V2 as a vertex set and its edge set is

E = {(u1,v1) (u2, v2) either [u1 = u2 and v1v2 ∈ E2] or [u1u2 ∈ E1]} .

It is worth mentioning that, in general, G1 [G2] and G2 [G1] are not isomorphic
graphs since |E (G1 [G2])| = p1q2 + p2

2q1 and |E (G2 [G1])| = p2q1 + p2
1q2, where

|V (G1)| = p1, |V (G2)| = p2, |E (G1)| = q1, |E (G2)| = q2.
In [8] M. Y. Alzoubi and M. M. Jaradat studied the basis number of the composi-

tion of paths and cycles with Ladders, Circular ladders and Möbius ladders. Namely,
they proved that the basis number of the graphs Pn [Lm], Pn [CLm], Pn [MLm],
Cn [Lm], Cn [CLm] and Cn [MLm] is 4 except possibly for some cases in each of
them.

The purpose of this paper is to investigate the basis number of the graphs
Ln [Pm], CLn [Pm], MLn [Pm], Ln [Cm], CLn [Cm] and MLn [Cm] taking into ac-
count that the lexicographic product is noncommutative. We use the notations Pn,
Cn, Ln, CLn and MLn to denote a path, a cycle, a ladder, a circular ladder and a
Möbius ladder, respectively.

2. The Main results

Throughout this work, Pn and Cn denote the path 012 · · · (n− 1) and the cy-
cle 012 · · · (n− 1) 0; respectively such that E (Pn) = {i (i + 1) : 0 ≤ i ≤ n− 2} and
we define the edge set of Cn by E (Cn) = {i (i + 1) : 0 ≤ i ≤ n− 1}. The circular
ladder, CLn, will be taken as a two concentric cycles Ca = a0a1 · · · an−1a0 and
Cb = b0b1 · · · bn−1b0 with the vertex-set as follows :

V (CLn) = {a0, a1, · · · , an−1, b0, b1, · · · , bn−1}
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and the edge-set as follows :

E (CLn) = E (Ca) ∪ E (Cb) ∪ {aibi : 0 ≤ i ≤ n− 1} .

The ladder Ln is obtained from CLn by deleting the edges a0an−1 , b0bn−1. The
Möbius ladder MLn is obtained from CLn by deleting the edges a0an−1, b0bn−1

and replacing them by the two edges a0bn−1 and b0an−1.

Lemma 2.1. Let m, n be two positive integers, (n ≥ 3), such that 4(m2(3n− 2) +
1) ≤ 3(2nm + m2(3n− 2)), then m ≤ 3.

Proof. Since 4(m2(3n− 2)+ 1) ≤ 3(2nm +m2(3n− 2)), we have 4m2(3n− 2)+ 4 ≤
6nm + 3m2(3n− 2), then m2(3n− 2) + 4 ≤ 6nm, thus m +

4
m(3n− 2)

≤ 6n

3n− 2
�

6n

3(n− 1)
, therefore m � 4. �

Lemma 2.2. Let m, n be two positive integers; (n ≥ 3), and s ≤ 3m(2n), such

that s +
[
6nm + 9nm2 − 6m2 − 3s

4

]
≥ 3nm2 − 2m2 + 1, where [x] is the greatest

integer less than or equal to x. Then m � 6.

Proof. Since
[
6nm + 9nm2 − 6m2 − 3s

4

]
≤ 6nm + 9nm2 − 6m2 − 3s

4
we have

3nm2 − 2m2 + 1 ≤ s +
6nm + 9nm2 − 6m2 − 3s

4
. If we multiply this inequality

by 4 and rearrange the terms we get m2(3n − 2) + 4 ≤ 12nm. If we divide the

inequality by m(3n− 2) we have m +
4

m(3n− 2)
≤ 4

(
3n

3n− 2

)
. Since

3n

3n− 2
is a

decreasing sequence for all n ≥ 3 and
9
7

is its maximum we have m � 6. �

It is clear that |V (Ln[Cm])| = 2nm, |E(Ln[Cm])| = 2nm + m2(3n− 2), and so
dim C(Ln[Cm]) = |E(Ln[Cm])| − |V (Ln[Cm])|+ 1 = m2(3n− 2) + 1.

Theorem 2.1. If n ≥ 3 and m ≥ 5, then 3 ≤ b(Ln[Cm]) ≤ 4. Moreover,
b(Ln[Cm]t) = 4 for all n ≥ 3, m ≥ 6.

Proof. The graph Ln[Cm] = C2n[Cm]
⋃

(
n−2⋃
i=1

K(ai,m),(bi,m)), where

C2n = a0a1 · · · an−1bn−1bn−2 · · · b1b0a0.

Since C2n[Cm] is a nonplanar subgraph of Ln[Cm], the graph Ln[Cm] is a nonplanar
graph and thus by Maclane’s theorem b(Ln[Cm]) ≥ 3.

To prove that b(Ln[Cm]) ≤ 4, we exhibit a 4 − fold basis for C(Ln[Cm]). For
each 1 ≤ r ≤ n− 2, define the following sets of cycles in C(Ln[Cm]):

Ar = B(K(ar,m)(br,m)),
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A
′

r = {(ar, 0)(br, i)(br, i + 1)(ar, 0): 0 ≤ i ≤ m− 2}
∪{(br,m− 1)(ar, i)(ar, br)(br,m− 1): 0 ≤ i ≤ m− 2},

Q = {Qi = (ai, 0)(ai+1, 0)(bi+1, 0)(bi, 0)(ai, 0): i ∈ Zn−2}.

Let Br = Ar

⋃
A
′

r. Consider B(Ln[Cm]) = B(C2n[Cm])
⋃ (

n−2⋃
r=1

Br

) ⋃
Q, where

B(C2n[Cm]) is the 4− fold basis of C(C2n[Cm]) which is obtained in Theorem 3.7
of [11], so B(C2n[Cm]) is linearly independent set of cycles in C(Ln[Cm]).

Let B∗ = B(C2n [Cm]) ∪Q, the cycles of Q enclose the finite faces of a planar
ladder and form a basis to this ladder. Thus Q is linearly independent set of cycles
in C(Ln [Cm]). Moreover, E(Q) ∩ E(C2n [Cm]) induces a forest of paths, thus by
Lemma 1.2 we conclude that B∗ is linearly independent.

For each 1 ≤ r ≤ n − 2, Ar is Schemeichel’s 4 − fold basis of the subspace
C(K(ar,m),(br,m)) that obtained in Theorem 2.4 of Schemeichel [18], thus each Ar is
linearly independent set of cycles in C(Ln [Cm]). A

′

r is linearly independent set of
cycles because the cycles of A

′

r form the set of all finite faces of their corresponding
planar subgraph that obtained by pasting them together successively with increasing
i. Moreover, each cycle in A

′

r contains one edge from the set

H = {(ai, 0)(ai, 1), (ai, 1)(ai, 2), · · · , (ai,m− 1)(ai,m)}
∪ {(bi, 0)(bi, 1), (bi, 1)(bi, 2), · · · , (bi,m− 1)(bi,m)} ,

and this edge doesnot occur in any cycle of Ar, then the cycles of A
′

r are linearly
independent with the cycles of Ar, thus Br = Ar∪ A

′

r is linearly independent set

of cycles in C(Ln [Cm]).
n−2⋃
r=1

Br is linearly independent set of cycles in C(Ln [Cm])

because E(Br) ∩ E(Bk) = φ, for all 1 ≤ r, k ≤ n − 2 and r 6= k. Moreover,

E(B∗)∩E

(
n−2⋃
r=1

Br

)
is a forest, thus by Lemma 1.2, B(Ln [Cm]) = B∗ ∪

(
n−2⋃
r=1

Br

)
is a linearly independent set of cycles in C(Ln [Cm]). Since

|B(Ln [Cm])| = |B(C2n [Cm])|+

∣∣∣∣∣
n−2⋃
r=1

Br

∣∣∣∣∣ + |Q|

= 2nm2 + 1 + (m2 − 1)(n− 2) + n− 2
= 3nm2 − 2m2 + 1 = dim C(Ln [Cm]).

it follows that B(Ln [Cm]) is a basis for C(Ln [Cm]). It is easy to verify that
B(Ln [Cm]) is a 4 − fold basis for C(Ln [Cm]). Hence, 3 ≤ b(Ln [Cm]) ≤ 4 for
all n ≥ 3 and m ≥ 5.

On the other hand, suppose that C(Ln [Cm]) has a 3 − fold basis B. Then, to
prove that B can not exist for all n ≥ 3 and m ≥ 6, we have three cases:

Case 1. Suppose that B contains only 3-cycles. Then |B| ≤ 3m(2n) = 6nm, since
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every 3-cycles in B must contain an edge from the set

S = {(ai, r)(ai, r + 1): r ∈ Zm, i ∈ Zn} ∪ {(bi, r)(bi, r + 1): r ∈ Zm, i ∈ Zn} ,

where |S| = 2nm, and the fold of every edge of S is at most 3. But |B| = m2(3n−
2) + 1 = dim(C(Ln [Cm])) , so that m2(3n − 2) + 1 ≤ 6nm, and m2(3n − 2) �
m2(3n − 2) + 1 ≤ 6nm, since m ≥ 5 then 52(3n − 2) � 30n, which implies that
75n − 30n − 50 � 0 ⇔ 45n − 50 � 0, which doesnot hold for all n ≥ 2. Therefore,
m2(3n− 2) + 1 ≤ 6nm doesnot hold for all n ≥ 3 and m ≥ 5. Hence, B cannot be
a basis of C(Ln [Cm]), a contradiction.

Case 2. Suppose that B consists only of cycles of length greater than or equal to 4,
then by Lemma 1.1 we have 4(m2 (3n− 2 ) + 1) ≤ 3(2nm + m2 (3n − 2)) because
dim C(Ln [Cm]) = m2( 3n−2)+1, |E(Ln [Cm])| = m2(3n −2)+2nm, and |Ci| ≥ 4
for every Ci ∈ B. But, by Lemma 2.1, we have a contradiction for any n ≥ 3 and
m ≥ 6.

Case 3. Suppose that B consists of s 3 -cycles and t cycles of length greater than
or equal to 4. Then s ≤ 3m (2n) because we have at most 3m(2n) 3 − cycles in
B as we explained in Case 1. Since |E(Ln [Cm])| = m2 (3n − 2) +2nm, and the
fold of every edge of Ln [Cm] is at most 3 in B and 3s edges are joined to make

the s 3 -cycles, we have t ≤
[
6nm + 9nm2 − 6m2 − 3s

4

]
. Then, m2(3n − 2) +

1 = dim(C(Ln [Cm])) = |B| = s + t ≤ s +
[
6nm + 9nm2 − 6m2 − 3s

4

]
, so that

m2(3n − 2) + 1 ≤ s +
[
6nm + 9nm2 − 6m2 − 3s

4

]
. But, this inequality implies a

contradiction for all n ≥ 3 and m ≥ 6 as proved in Lemma 2.2.
From the above three cases we deduce that C(Ln [Cm]) has no 3−fold basis for

all n ≥ 3 and m ≥ 6. Hence, b(Ln [Cm]) = 4 for all n ≥ 3 and m ≥ 6. �

Lemma 2.3 Let m, n be two positive integers, n ≥ 3, such that 4(3nm2 − 2m2 −
2n + 1) ≤ 3(2nm− 2n + 3nm2 − 2m2), then this inequality holds for m � 4.

Proof. Let 4(3nm2− 2m2− 2n+1) ≤ 3(2nm− 2n+3nm2− 2m2). We can simplify
it to get the inequality m2(3n−2) ≤ 2n(3m+1)−4. Dividing by m(3n−2) implies

m ≤ 2n(3m + 1)− 4
m(3n− 2)

≤ 2
(

3n

3n− 2

)
+

2(n− 2)
m(3n− 2)

. Since
3n

3n− 2
is a decreasing

sequence for all n ≥ 3 and
9
7

is its maximum, we conclude that m � 4. �

Lemma 2.4 Let m, n be two positive integers, (n ≥ 3), and s ≤ 3(2n)(m−1), such

that m2(3n− 2)− 2n + 1 ≤ s +
[
3m2(3n− 2) + 6n(m− 1)− 3s

4

]
, then m � 6.

Proof. Since
[
3m2(3n− 2) + 6n(m− 1)− 3s

4

]
≤ 3m2(3n− 2) + 6n(m− 1)− 3s

4
,
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we have m2(3n− 2)− 2n + 1 ≤ s +
3m2(3n− 2) + 6n(m− 1)− 3s

4
. If we multiply

by 4, rearrange the terms and use the fact that s ≤ 6n(m − 1), we reach the
inequality m2(3n − 2) ≤ 12nm − 4(n − 1). Dividing by m(3n − 2) implies m ≤
4

3n

3n− 2
− 4

n− 1
m(3n− 2)

� 6 being
3n

3n− 2
is a decreasing sequence for each n ≥ 3

and
9
7

is its maximum. �

Corollary 2.1. For every n ≥ 3 and m ≥ 5, we have 3 ≤ b(Ln [Pm]) ≤ 4.
Moreover, if n ≥ 3 and m ≥ 6, then b(Ln [Pm]) = 4.

Proof. The graph Ln [Pm] is a subgraph of Ln [Cm] consists of 3n − 2 copies of
Km,m.

Let B(Ln [Pm]) = B(Ln [Cm]) −M , where

M = {(ai, 0)(ai, 1)(ai, 2) · · · (ai,m− 1)(ai, 0): i ∈ Zn}
∪ {(bi, 0)(bi, 1)(bi, 2) · · · (bi,m− 1)(bi, 0): i ∈ Zn} .

and B(Ln [Cm]) is the 4− fold basis of C(Ln [Cm]) that obtained in previous theo-
rem. Because B(Ln [Cm]) is linearly independent set and B(Ln [Pm]) ⊆ B(Ln [Cm]),
B(Ln [Pm]) is linearly independent set of cycles in C(Ln [Pm]). Since |B(Ln [Pm])| =
3nm2− 2m2 + 1− 2n = m2(3n− 2)− 2n + 1 = dim C(Ln [Pm]) we have B(Ln [Pm])
is a basis for C(Ln [Pm]). The fold of any edge of Ln [Pm] in B(Ln [Pm]) doesn’t
excess in B(Ln [Cm]), thus B(Ln [Pm]) is a 4 − fold basis of C(Ln [Pm]). Hence,
3 ≤ b(Ln [Pm]) ≤ 4.

On the other hand, suppose that C(Ln [Pm]) has a 3 − fold basis B, then to
prove that such B cannot exist for all n ≥ 3 and m ≥ 4 we have three cases:

Case 1. Suppose that B consists only of 3-cycles, then |B| ≤ 3(2n)(m − 1) =
6nm− 6n, because every 3-cycle in B must contain an edge from the set
S ={(ai, r)(ai, r + 1):r ∈ Zm−1, i ∈ Zn}∪{(bi, r)(bi, r + 1):r ∈ Zm−1, i ∈ Zn}, and
the fold of every edge is at most 3. Since |B| = m2(3n − 2) − 2n + 1, we have
m2(3n−2)−2n+1 ≤ 6nm−6n. This inequality reduces to m2(3n−2)+1 ≤ 6nm−4n.

Dividing by m(3n − 2) and simplifying this inequality gives m +
1

m(3n− 2)
≤

2
3

(
3n

3n− 2

) (
3m− 2

m

)
< 3 because

3n

3n− 2
is a decreasing sequence for each n ≥ 3

and
9
7

is its maximum. Hence, B cannot be a basis of C(Ln [Pm]) for all n ≥ 3 and
m ≥ 4, a contradiction.

Case 2. Suppose that B consists only of cycles of length greater than or equal to 4,
then by Lemma 1.1 we have 4(3nm2− 2m2− 2n+1) ≤ 3(2nm− 2n+3nm2− 2m2)
because dim C(Ln [Pm]) = 3nm2 −2m2 −2n + 1, |E(Ln [Pm])| = 2nm− 2n + 3nm2

−2m2, and |Ci| ≥ 4, for every Ci ∈ B. But by Lemma 2.3, we have a contradiction
for any n ≥ 3 and m ≥ 6.
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Case 3. Suppose that B consists of s 3-cycles and t cycles of length greater than or
equal to 4, then s ≤ 3(m− 1) (2n), because we have at most 3(2n)(m− 1) 3-cycles
in B as we explained in Case 1. Since |E(Ln [Pm])| = m2 (3n −2) +2n(m−1) , and
the fold of every edge of Ln [Pm] is at most 3 in B and 3s edges are joined to make

the s 3-cycles we have t ≤
[
3(m2(3n− 2) + 2n (m− 1)) − 3s

4

]
, then m2(3n−2)−

2n + 1=dim C(Ln [Pm])= |B|=s + t ≤ s +
[
3(m2(3n− 2) + 2n (m− 1)) − 3s

4

]
so

that m2(3n − 2) − 2n + 1 ≤ s +
[
3(m2(3n− 2) + 2n (m− 1)) − 3s

4

]
. But this

inequality implies a contradiction for all n ≥ 3 and m ≥ 6 as proved in Lemma 2.4.

From the above three cases we deduce that C(Ln [Pm]) has no 3− fold basis for
all n ≥ 3 and m ≥ 6. Hence, b(Ln [Pm]) = 4 for all n ≥ 3 and m ≥ 6. �

Lemma 2.5. Let m, n be two positive integers, (n ≥ 4), such that 4( 3nm2 +1) ≤
3(3nm2 + 2nm). Then m < 2.

Proof. Since 4(3nm2 +1) ≤ 3(3nm2 +2nm), we have 12nm2 +4 ≤ 6nm+9nm2. So

that 3nm2 + 4 ≤ 6nm, and 3m +
4

nm
≤ 6, this implies that 3m < 6. Thus m < 2.

�

Lemma 2.6 Let m, n be two positive integers, (n ≥ 4), s ≤ 6nm, such that

3nm2 + 1 ≤ s +
[
6nm + 9nm2 − 3s

4

]
, then m < 4.

Proof. Since
[
6nm + 9nm2 − 3s

4

]
≤ 6nm + 9nm2 − 3s

4
, we have 3nm2 + 1 ≤

s +
6nm + 9nm2 − 3s

4
. If we multiply by 4 rearrange the terms and use the fact

that s ≤ 6nm, we get m +
4

3nm
≤ 4, so that m < 4. �

Theorem 2.2. If n ≥ 4 and m ≥ 5, then b(CLn [Cm]) = 4.

Proof. The graph CLn [Cm] = Ln [Cm]∪K(an−1,m),(a0,m) ∪K(bn−1,m),(b0,m) consists
of 3n copies of the nonplanar graph Km,m. It is clear that CLn [Cm] is a nonplanar
graph because Ln [Cm] is a nonplanar subgraph of it, thus by MacLane’s Theorem
b(CLn [Cm]) ≥ 3.

To prove b(CLn [Cm]) ≤ 4, we exhibit a 4-fold basis for C(CLn [Cm]). Define
the following sets of cycles in C(CLn [Cm]):

A1 = {(an−1, 0)(a0, i)(a0, i + 1)(an−1, 0): 0 ≤ i ≤ m− 2 }
∪ {(a0,m− 1)(an−1, i)(an−1, i + 1)(a0,m− 1) : 0 ≤ i ≤ m− 2 } ,

A2 = {(bn−1, 0)(b0, i)(b0, i + 1)(bn−1, 0): 0 ≤ i ≤ m− 2}
∪ {(b0,m− 1)(bn−1, i)(bn−1, i + 1)(b0,m− 1): 0 ≤ i ≤ m− 2} ,
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A3 = B(K(an−1,m),(a0,m)),
A4 = B(K(bn−1,m),(b0,m) ),
Q1 = (a0,m− 1)(a1,m− 1)(a2,m− 1), · · · , (an−1,m− 1)(a0,m− 1),
Q2 = (b0,m− 1)(b1,m− 1)(b2,m− 1), · · · , (bn−1,m− 1)(b0,m− 1).

Let B1 = A1 ∪ A3 and B2 = A2 ∪A4 and define B(CLn [Cm]) = B(Ln [Cm])
∪B1 ∪B2 ∪Q1 ∪Q2 , where B(Ln [Cm]) is the 4-fold basis of C(Ln [Cm]) that was
exhibited in Theorem 2.1. So B(Ln [Cm]) is linearly independent set of cycles in
C(CLn [Cm]). Since Q1 contains the edge (an−1,m− 1)(a0,m− 1) and Q2 contains
the edge (bn−1,m− 1)(b0,m− 1) and each of these edges doesn’t occur in any cycle
of B(Ln [Cm]) then B∗ = B(Ln [Cm]) ∪Q1 ∪Q2 is linearly independent.

Note that A3 and A4 are Schemeichel’s 4−fold bases of the subspaces C(K(an−1,m),

(a0,m)) and C(K(bn−1,m),(b0,m)), respectively, and they were obtained in Theorem
2.4 of [18]. Thus, A3 and A4 are linearly independent set of cycles in C(CLnCm),
A3∩A4 = φ, so A3∪A4 is linearly independent set of cycles. A1 and A2 are linearly
independent sets of cycles because each of them represents the set of all finite faces
of the corresponding planar graph that formed by pasting these cycles successively
with increasing i, and A1 ∩A2 = φ, so A1 ∪A2 is linearly independent set of cycles.
Since each linear combination of the cycles of A1 contains at least one edge from
the set

H1 = {(a0, 0)(a0, 1), (a0, 1)(a0, 2), · · · , (a0,m− 1)(a0,m)}
∪ {(an−1, 0)(an−1, 1), (an−1, 1)(an−1, 2), · · · , (an−1,m− 1)(an−1,m)}

which doesnot appear in any cycle of A3, then the cycles of A1 are linearly inde-
pendent with the cycles of A3. Thus B1 = A1 ∪ A3 is a linearly independent set
of cycles in C(CLn [Cm]). Similarly, each linear combination of the cycles of A2

contains at least one edge from the set

H2 = {(b0, 0)(b0, 1),(b0, 1)(b0, 2), · · · , (b0,m− 1)(b0,m)}
∪ {(bn−1, 0)(bn−1, 1),(bn−1, 1)(bn−1, 2), · · · , (bn−1,m− 1)(bn−1,m)}

and this edge doesnot appear in any cycle of A4, then the cycles of A2 are linearly
independent of the cycles of A4. Thus B2 = A2 ∪ A4 is a linearly independent
set of cycles in C(CLn [Cm]). Since E(B1)∩ E(B2) = φ, then B1∪ B2 is linearly
independent. Moreover, E(B1 ∪ B2) ∩ E(B∗) is a forest, thus by Lemma 1.2, we
conclude that B(CLn [Cm]) = B∗ ∪B1 ∪B2 is linearly independent. Since

|B(CLn [Cm])| = |B(Ln [Cm])|+ |B1|+ |B2|+ |Q1|+ |Q2|
= 3nm2 − 2m2 + 1 + m2 − 1 + m2 − 1 + 1 + 1
= 3nm2 + 1 = dim C(CLn [Cm]),

it follows that B(CLn [Cm]) is a basis for C(CLn [Cm]). It is easy to verify that
B(CLn [Cm]) is a 4-fold basis for C(CLn [Cm]). Hence, b (CLn [Cm]) = 4 for all
n ≥ 4 and m ≥ 5.
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On the other hand, suppose that C(CLn [Cm]) has a 3− fold basis B. Then we
have three cases to prove that B can’t exist for all n ≥ 4 and m ≥ 5:

Case 1. Suppose that B contains only 3-cycles then |B| ≤ 3m(2n) = 6nm, because
every 3− cycles in B must contain an edge from the set

S = {(ai, 0)(ai , 1), (ai, 1)(ai, 2), · · · , (ai,m− 1)(ai, 0): i ∈ Zn}
∪ {(bi , 0)(bi , 1), (bi, 1)(bi, 2), · · · , (bi,m− 1)(bi, 0): i ∈ Zn} ,

and the fold of every edge of S is at most 3. But |B| = 3nm2+1, so that 3nm2+1 ≤
3m (2n) = 6nm, but this inequality doesnot hold for all n ≥ 2 and m ≥ 2. Hence,
B cannot be a basis of C(CLn [Cm]) for all n ≥ 4 and m ≥ 5, a contradiction.

Case 2. Suppose that B consists only of cycles of length greater than or equal
to 4 then by Lemma 1.1 we have 4(3nm2 + 1) ≤ 3(3nm2 + 2nm), because dim
C(CLn [Cm]) = 3nm2 + 1, |E(Ln [Cm])| = 3nm2 + 2nm, and |Ci| ≥ 4 for every
Ci ∈ B. But by Lemma 2.5, we have a contradiction for any n ≥ 4 and m ≥ 5.

Case 3. Suppose that B consists of s3− cycles and t cycles of length greater than
or equal to 4, then s ≤ 3m (2n), because we have at most 3m(2n) 3− cycles in B
as we explained in Case 1. Since |E(Ln [Cm])| = 3nm2 +2nm, and the fold of every
edge of CLn [Cm] is at most 3 in B and 3s edges are joined to make the s3− cycles,

we have t ≤
[
6nm + 9nm2 − 3s

4

]
. Then 3nm2 + 1 = dim C(CLn [Cm]) = |B| =

s + t ≤ s +
[
6nm + 9nm2 − 3s

4

]
. Thus 3nm2 + 1 ≤ s +

[
6nm + 9nm2 − 3s

4

]
. But

this inequality implies a contradiction for all n ≥ 4 and m ≥ 5, as it was proved in
Lemma 2.6. �

Lemma 2.7. Let m, n be two positive integers, (n ≥ 4), such that 4(3nm2 − 2n +
1) ≤ 3(3nm2 + 2nm− 2n). Then m � 3.

Proof. Since 4(3nm2 − 2n + 1) ≤ 3(3nm2 + 2nm− 2n) we have 12nm2 − 8n + 4 ≤

9nm2 + 6nm − 6n, then 3nm2 + 4 − 2n ≤ 6nm, thus m ≤ 2 +
(

2
3m

− 4
3nm

)
.

Therefore, m � 3. �

Lemma 2.8. Let m, n be two positive integers, (n ≥ 4), s ≤ 6nm − 6n such that

3nm2 − 2n + 1 ≤ s +
[
6nm + 9nm2 − 6n− 3s

4

]
. Then m � 5.

Proof. Since
[
6nm + 9nm2 − 6n− 3s

4

]
5

6nm + 9nm2 − 6n− 3s

4
we get 3nm2 −

2n + 1 ≤ s +
6nm + 9nm2 − 6n− 3s

4
. If we multiply by 4 and rearrange the terms

and use the fact that s ≤ 6nm− 6n we get the inequality 3nm2 ≤ 2n + 12nm− 4.

Dividing by 3nm implies m ≤ 4 +
(

2
3m

− 4
3nm

)
= 4 +

2n− 4
3nm

. since n ≥ 4 this
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inequality holds only for m � 5. �

Corollary 2.2 For every n ≥ 4 and m ≥ 5, b(CLn [Pm]) = 4.

Proof. The graph CLn [Pm] is a subgraph of CLn [Cm] that consists of 3n copies of
Km,m.

Let B(CLn [Pm]) = B(Ln [Cm])−M , where

M = {(ai, 0)(ai, 1)(ai, 2) · · · (ai,m− 1)(ai, 0): i ∈ Zn}
∪ {(bi, 0)(bi, 1)(bi, 2) · · · (bi,m− 1)(bi, 0): i ∈ Zn}

and B(CLn [Cm]) is the 4− fold basis of C(CLn [Cm]) that was exhibited in The-
orem 2.1. Since B(CLn [Cm]) is linearly independent set and B(CLn [Pm]) ⊆
B(CLn [Cm]), then B(CLn [Pm]) is linearly independent set of cycles in C(CLn [Pm]).
Since |B(CLn [Pm])| = 3nm2 + 1 − 2n = dim C(CLn [Pm]), we conclude that
B(CLn [Pm]) is a basis for C(CLn [Pm]). The fold of any edge of CLn [Pm] in
B(CLn [Pm]) is at most as it is in B(CLn [Cm]). Thus B(CLn [Pm]) is 4-fold basis
of C(CLn [Pm]). Hence, b(CLn [Pm]) = 4 for each n ≥ 4 and m ≥ 5.

On the other hand, suppose that C(CLn [Pm]) has a 3− fold basis B, then we
have the following three cases to prove that such B doesnot exist for all n ≥ 4 and
m ≥ 5:

Case1. Suppose that B contains only 3 -cycles, then |B| ≤ 3(m−1)(2n) = 6nm−6n,
because every 3-cycles in B must contain an edge from the set

S = {(ai, 0)(ai, 1), (ai, 1)(ai, 2), · · · , (ai,m− 2)(ai,m− 1): i ∈ Zn}
∪ {(bi, 0)(bi, 1), (bi, 1)(bi, 2), · · · ., (bi,m− 2)(bi,m− 1): i ∈ Zn} ,

and the fold of every edge of S is at most 3. But |B| =dim C(CLn [Pm]) = 3nm2

−2n + 1, so 3nm2− 2n + 1 ≤ 6nm− 6n. Then 3nm2 + 1 ≤ 6nm− 4n . If we divide

by 3nm we get m +
1

3nm
+

4
3m

≤ 2, which implies m � 1. Hence B cannot be a

basis of C(CLn [Pm]) for all n ≥ 4 and m ≥ 5, a contradiction.

Case 2. Suppose that B consists only of cycles of length greater than or equal to
4, then by Lemma 1.1 we have 4 (3nm2− 2n+1) ≤ 3 (3nm2 +2nm− 2n) , because
dim C(CLn [Pm]) = 3nm2 − 2n + 1, |E(Ln [Pm])| = 3nm2 + 2nm− 2n, and |Ci| ≥
4 for every Ci ∈ B. But by Lemma 2.7 we have a contradiction for any n ≥ 4 and
m ≥ 5.

Case 3. Suppose that B consists of s3 − cycles and t cycles of length greater
than or equal to 4, then s ≤ 3(m − 1)(2n), because we have at most 3(2n)(m -1)
3− cycles in B as we explained in Case 1. Since |E(Ln [Pm])| = 3nm2 + 2nm− 2n,
and the fold of every edge of CLn [Pm] is at most 3 in B and 3s edges are

joined to make the s3 − cycles, we have t ≤
[
6nm + 9nm2 − 6n− 3s

4

]
. Then

3nm2 − 2n + 1 = dim C(CLn [Pm]) = |B| = s + t ≤ s +
[
6nm + 9nm2 − 6n− 3s

4

]
.
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So that 3nm2− 2n+1 ≤ s+
[
6nm + 9nm2 − 6n− 3

4

]
. But, this inequality implies

a contradiction for all n ≥ 4 and m ≥ 5 as we proved in Lemma 2.8. �

Theorem 2.3. For every n ≥ 4 and m ≥ 5, b(MLn [Cm]) = 4.

Proof. The graph MLn [Cm] = Ln [Cm] ∪ K(an−1,m),(b0,m) ∪ K(bn−1,m),(a0,m) con-
sists of 3n copies of the nonplanar graph Km,m. It is clear that MLn [Cm] is a
nonplanar graph because Ln [Cm] is a nonplanar subgraph of it, thus by Maclane’s
theorem b(MLn [Cm]) ≥ 3.

To prove b(MLn [Cm]) ≤ 4, we exhibit a 4−fold basis for C(MLn [Cm]). Define
the following sets of cycles in C(MLn [Cm]):

A1 = {(an−1, 0)(b0, i)(b0, i + 1)(an−1, 0): 0 ≤ i ≤ m− 2}
∪ {(b0,m− 1)(an−1, i)(an−1, i + 1)(b0,m− 1): 0 ≤ i ≤ m− 2} ,

A2 = {(bn−1, 0)(a0, i)(a0, i + 1)(bn−1, 0): 0 ≤ i ≤ m− 2}
∪ {(a0,m− 1)(bn−1, i)(bn−1, i + 1)(a0,m− 1): 0 ≤ i ≤ m− 2} ,

A3 = B(K(an−1,m),(b0,m)),
A4 = B(K(bn−1,m),(a0,m)),
Q1 = (a0,m− 1)(a1,m− 1), · · · , (an−1,m− 1) (b0,m− 1 )(a0,m− 1),
Q2 = (b0,m− 1)(b1,m− 1)(b2,m− 1), · · · , (bn−1,m− 1)(a0,m− 1)(b0,m− 1).

Let B1 = A1 ∪ A3, B2 = A2 ∪ A4. Define B(MLn [Cm]) = B(Ln [Cm]) ∪
B1 ∪ B2 ∪ Q1 ∪ Q2, where B(Ln [Cm]) is the 4 -fold basis of C(Ln [Cm]) that was
exhibited in Theorem 2.1. So B(Ln [Cm]) is linearly independent set of cycles in
C(MLn [Cm]). Since Q1 contains the edge (an−1,m−1)(b0,m−1) and Q2 contains
the edge (bn−1,m−1)(a0,m−1) and each of these edges doesn’t occur in any cycle
of B(Ln [Cm]) then B∗ = B(Ln [Cm]) ∪Q1 ∪Q2 is linearly independent.
Note that A3 and A4 are Schemeichel’s 4−fold bases of the subspaces C(K(an−1,m),

(b0,m)) and C (K(bn−1,m),(a0,m)), respectively, and they were obtained in Theorem
2.4 of [18]. Thus A3 and A4 are linearly independent set of cycles in C (MLn [Cm]),
and A3 ∩ A4 = φ, so A3 ∪ A4 is linearly independent sets of cycles. A1 and A2 are
linearly independent sets of cycles because each of them represents the set of all
finite faces of the corresponding planar graph that formed by pasting these cycles
successively with increasing i, and A1 ∩A2 = φ, so A1 ∪A2 is linearly independent
set of cycles. Since each linear combination of cycles of A1 contains at least one
edge from the set

H1 = {(b0, 0)(b0, 1), (b0, 1)(b0, 2), · · · , (b0,m− 1)(b0,m)}
∪ {(an−1, 0)(an−1, 1), (an−1, 1)(an−1, 2), · · · , (an−1,m− 1)(an−1,m)}

and this edge doesnot appear in any cycle of A3 then the cycles of A1 are linearly
independent of the cycles of A3. Thus B1 = A1 ∪ A3 is linearly independent set of
cycles in C(CLn [Cm]). Similarly, each linear combination of cycles of A2 contains
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at least one edge from the set

H2 = {(a0, 0)(a0, 1), (a0, 1)(a0, 2), · · · , (a0,m− 1)(a0,m)}
∪ {(bn−1, 0)(bn−1, 1), (bn−1, 1)(bn−1, 2), · · · , (bn−1,m− 1)(bn−1,m)} ,

and this edge doesnot appear in any cycle of A4 then the cycles of A2 are linearly
independent of the cycles of A4, thus B2 = A2 ∪ A4 is linearly independent set
of cycles in C(MLn [Cm]). Since E(B1)∩ E(B2) = φ the set B1∪ B2 is linearly
independent. Moreover, E(B1 ∪ B2) ∩ E(B∗) is a forest, then by Lemma 1.2 we
conclude that B(MLn [Cm]) = B∗ ∪ B1 ∪ B2 is linearly independent set of cycles.
Since

|B(MLn [Cm])| = |B(Ln [Cm])|+ |B1|+ |B2|+ |Q1|+ |Q2|
= 3nm2 − 2m2 + 1 + (m2 − 1) + (m2 − 1) + 1 + 1
= 3nm2 + 1 = dim C(MLn [Cm]),

it follows that B(MLn [Cm]) is a basis for C(MLn [Cm]). It is easy to see that
B(MLn [Cm]) is a 4− fold basis for C(MLn [Cm]). Hence, b(MLn [Cm]) = 4 for all
n ≥ 4 and m ≥ 5.

On the other hand, suppose that C(MLn [Cm]) has a 3 − fold basis B. Then
we have three cases to prove that B can’t exist for all n ≥ 4 and m ≥ 5. They are
identical to the three cases of Theorem 2.2, which we omit here. �

Corollary 2.3. For every n ≥ 4 and m ≥ 5, (bMLn [Pm]) = 4.

Proof. The graph MLn [Pm] is a subgraph of MLn [Cm] that consists of 3n copies
of Km,m.

Let B(MLn [Pm]) = B(MLn [Cm])−M , where

M = {(ai , 0)(ai , 1), (ai , 1)(ai , 2), · · · , (ai ,m− 1)(ai , 0): i ∈ Zn }
∪ {(bi , 0)(bi , 1), (bi , 1)(bi , 2), · · · , (bi ,m− 1)(bi , 0): i ∈ Zn} ,

and B(MLn [Cm] ) is the 4 − fold basis of C(MLn [Cm]) that was exhibited in
Theorem 2.3. Since B(MLn [Cm]) is linearly independent set and B(MLn [Pm]
⊆ B(MLn [Cm]), then B( MLn [Pm]) is linearly independent set of cycles in
C(MLn [Pm]). Since |B(MLn [Pm])| = 3nm2 − 2n + 1 = dim C(MLn [Pm]), we
conclude that B(MLn [Pm]) is a basis for C(MLn [Pm]). The fold of any edge of
MLn [Pm] in B(MLn [Pm]) is the same as it is in B(MLn [Cm]), thus B(MLn [Pm])
is a 4-fold basis of C(MLn [Pm]). Hence, b(MLn [Pm]) = 4 for each n ≥ 4 and
m ≥ 5.

On the other hand, suppose that C(MLn [Pm]) has a 3-fold basis B. Then we
have three cases to prove that B can’t exist for all n ≥ 4 and m ≥ 5. They are
identical to the three cases of Theorem 2.2, which we omit here. �
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