Abstract
In finite field operations based on $GF(2^m)$, additions and subtractions are easily implemented. On the other hand, multiplications and divisions require mathematical elaboration of complex equations. There are two dominant way of approaching the solutions of finite filed operations, normal basis approach and polynomial basis approach, each of which has both benefits and weakness respectively. In this study, we adopted the mathematically feasible polynomial basis approach and suggest the optimization techniques of finite field operations based of mathematical principles.
$GF(2^m)$를 기본으로 하는 유한체 연산에서 덧셈과 뺄셈은 그 구현이 단순하지만, 곱셈, 나눗셈이나 역원을 구하는 데에는 수학적으로 복잡한 수식을 간략화 하는 과정이 필수적이다. 유한체 연산은 기본적으로 normal basis와 polynomial basis 두 가지 측면에서 접근할 수 있고 이 두 방법은 각각 장단점을 가지고 있다. 본 연구에서는 두 가지 basis 중에서 수학적인 접근이 용이한 polynomial basis를 사용한 접근방식을 채택하여 수학적인 원리를 이용한 수식의 간략화를 꾀하고 최적화하는 방법을 제시한다.