• Title/Summary/Keyword: 1kW급

Search Result 383, Processing Time 0.021 seconds

Design and comparison of capacitor charger for solid-state marx modulator (Solid-State marx modulator용 커패시터 충전기 설계 및 비교분석)

  • Kim, Shin;Bae, Jung soo;Kim, Tea Hyeon;Kim, Hyoung Suk;Yu, Chan Hun;Jang, Sung Roc
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.127-129
    • /
    • 2019
  • 본 논문은 Solid-state Marx modulator (SSMM)용 10 kV, 1 kW급 고전압 커패시터 충전기의 설계에 대해 기술한다. 개발된 Marx modulator용 충전기는 소프트 스위칭방식을 통해 높은 스위칭 주파수로 동작하는 컨버터를 제안함으로써 고밀도 설계를 구현한다. 특히 고전압 변압기 설계에 있어 피할 수 없는 누설 인덕턴스와 기생 커패시턴스를 회로의 파라미터로 사용 할 수 있는 공진형 컨버터를 기반으로 설계한다. 본 논문에서는 순수 전류원 특성을 가지며 스위치 온, 오프 시 모두 소프트 스위칭이 가능한 Discontinuous Conduction Mode (DCM) 직렬 공진형 컨버터와 공진 전류의 RMS값을 줄이고 변압기의 기생 커패시턴스를 공진 탱크로 사용하는 LCC 공진형 컨버터 Continuous Conduction Mode (CCM)를 설계한다. 각 컨버터의 동작에 따른 해석 및 공진 파라메터 상세 설계에 대해 기술하고 정격 운전 (10 kV, 1 kW) 실험결과를 통해 각 컨버터 토폴로지의 장단점을 비교하고 최종 실험결과에 대해 기술한다.

  • PDF

Analytic study on thermal management operating conditions of balance of 100kW fuel cell power plant for a fuel cell electric vehicle (100kW급 연료전지 열관리 시스템 실도로 운전조건 해석적 연구)

  • Lee, Ho-Seong;Lee, Moo-Yeon;Cho, Choong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • The objective of this study was to investigate performance characteristics of thermal management system(TMS) in a fuel cell electric vehicle with 100kW Fuel Cell(FC) system. In order to build up analytic modelling for TMS, each component was installed and tested under various operating conditions, such as water pump, radiator, 3-Way valve, COD heater, and FC stack etc. and as the results of them, correlations reflecting component's characteristics with flow rate, air velocity were developed. Developed analytic modelling was carried out under various operating conditions on the road. To verify modelling's accuracy, after prediction for optimum coolant flow rate was fulfilled under certain operating conditions, such as FC system, water pump speed, opening of 3-way valve, and pipe resistance, analytic and experimental values were compared and good agreement was shown. In order to predict cold-start operating performance for analytic modelling, coolant temperature variation was analyzed with $-20^{\circ}C$ ambient temperature and duration was predicted to rise in optimum temperature for FC. Because there is appropriate temperature difference between inlet and outlet of FC stack to operate FC system properly, related analysis was performed with respect to power consumption for TMS and heat rejection rate and performance map was depicted along with FC operating conditions.

Wind Power Smoothing Control Technique using Energy Storage System (에너지저장장치를 이용한 풍력발전의 출력 평준화 제어 기법 연구)

  • Lee, Jinho;Lee, Moonhwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.178.1-178.1
    • /
    • 2010
  • 기후변화 대응을 위해 세계적으로 신 재생에너지의 분담율(penetration rate)은 갈수록 증가하고 있고, 정부에서는 2015년까지 신 재생에너지의 개발에 총 40조원을 투자한다는 적극적인 계획을 세우고 있다. 하지만 신 재생에너지 중 전력 생산에 가장 큰 비중을 차지하는 풍력발전은 비급전성과 간헐성 등의 제약으로 인해 안정적인 전력을 공급하기 힘들뿐만 아니라 전력계통의 신뢰성을 악화시킬 수도 있는 리스크를 잠재하고 있는 에너지원이다. 이에 풍력발전 등 신 재생에너지원의 출력을 안정화시키기 위한 Smart Renewable 프로젝트가 현재 제주도에서 실증 단계에 있다. 이 논문에서는 한국전력 컨소시엄의 Smart Renewable 프로젝트 대상인 660kW급 풍력터빈과 200kWh급 리튬-이온 배터리 에너지저장장치를 이용하여, 풍력터빈의 출력을 평활화시키는 평활화 제어(Smoothing Control)와 일정시간동안 균일한 출력을 낼 수 있게 하는 정출력 제어(Constant Power Control)의 두 가지 기법을 시뮬레이션 하였다. t 시점의 에너지저장장치 잔존용량을 피드백 받아 t+1 시점의 풍력터빈과 에너지저장장치 합성출력의 목표치를 설정하는 잔존용량 피드백 방법을 이용하여 에너지저장장치의 운전모드, 초기 용량, 평활화 시정수(time constant) 등의 조건 변화가 평활화 제어와 정출력 제어에 미치는 영향을 각각 확인하고, 주어진 기기 조건 하에서 최적의 시정수 값과 운전모드를 도출하였다.

  • PDF

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure (고성능 형상 및 유리섬유/에폭시-우레탄 샌드위치 구조를 사용한 소형 풍력발전 블레이드의 공력 및 구조설계)

  • Chang-Duk Kong;Jo-Hyug Bang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.70-80
    • /
    • 2004
  • This study proposes a development result for the 1-kW class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was peformed by the finite element method. Moreover both structural safety and stability were verified through the full- scale structural test.

Performance optimization of 1 kW class residential fuel processor (1 kW급 가정용 연료개질기 성능 최적화)

  • Jung, Un-Ho;Koo, Kee-Young;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.731-734
    • /
    • 2009
  • KIER has been developed a compact and highly efficient fuel processor which is one of the key component of the residential PEM fuel cells system. The fuel processor uses methane steam reforming to convert natural gas to a mixture of water, hydrogen, carbon dioxide, carbon monoxide and unreacted methane. Then carbon monoxide is converted to carbon dioxide in water-gas-shift reactor and preferential oxidation reactor. A start-up time of the fuel processor is about 1h and CO concentration among the final product is maintained less than 5 vol. ppm. To achieve high thermal efficiency of 80% on a LHV basis, an optimal thermal network was designed. Internal heat exchange of the fuel processor is so efficient that the temperature of the reformed gas and the flue gas at the exit of the fuel processor remains less than $100^{\circ}C$. A compact design considering a mixing and distribution of the feed was applied to reduce the reactor volume. The current volume of the fuel processor is 17L with insulation.

  • PDF

A RX Cancellation Loop Configyration for TX Power Amplifier Module (수신대역 Cancellation Loop를 갖는 송신단 전력 증폭기 설계)

  • Jeong, yong-Chae;Park, Jun-Seok;Ahn, Dal;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1156-1160
    • /
    • 2000
  • The cancellation loop configuration for power amplifier module is proposed to reject the RX signals using feed-forward technique. In this paper, we implement the 1W-ampilfier module of WLL band to show validity of the proposed cancellation loop. The power amplifier module with the proposed cancellation loop can provide low TX insertion path loss due to duplexer and choice of loose RX attenuation characteristic for various wireless communication systems. It shows at least 90 % improved RX rejection characteristic compared to power amplifier module without RX band cancellation loop.

  • PDF

Design and Analysis of 20 W Class LED Converter Considering Its Control Method (제어 방식에 따른 20 W급 LED Converter 설계 및 분석)

  • Jeong, Young-Gi;Kim, Sung-Hyun;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.53-57
    • /
    • 2012
  • In this paper, by designing 20 W class driving circuit for driving high-power LED (Light Emitting Diode), we are going to comparatively carry out the analysis of characteristics for power circuit according to each design method. In this case, 200 V 60 Hz was performed as input data. The electrical characteristics such as voltage, current and ripple are checked for constant current circuit and constant voltage circuit in the LED module. In addition, as the ripple has an influence on illumination of LED light, low temperature working (-20 [$^{\circ}C$]) and high temperature working(80 [$^{\circ}C$]) are measured to make sure the ripple characteristics in accordance with temperature. In low temperature operation -20 [$^{\circ}C$] measurements, both constant current circuit and constant-voltage circuit were less impacted on input fluctuation, whereas in the high temperature operation 80 [$^{\circ}C$], current voltage in constant voltage circuit was surge after 430 [hour]. Voltage current ripple of constant current circuit was much less than constant voltage circuit, therefore we can show that constant current circuit is more stable.

A Study on the Design and Realization of the VHF Transmitter for Air Traffic Control (항공관제용 VHF대역 송신기 설계 및 구현에 관한 연구)

  • Park, Wook-Ki;Kang, Suk-Youb;Park, Hyo-Dal
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.121-130
    • /
    • 2005
  • In this paper, we designed and fabricated the VHF wireless transmitter for air traffic control. Fundamental performance of the investigated wireless transmitter is designed and fabricated to satisfy existing commercial wireless transmitter specification for air traffic control. 25 W and 50 W of output power can be generated by changing the power amplification part only. It is based on transmitting voice communication using AM modulation. Investigated wireless transmitter for air traffic control consists of four module parts: power supply, control, low power transmission and power amplification. We designed 1W transmitter to operate without power amplification part. It can be used properly in a basic component of CNS/ATM.

  • PDF

Concept research of fuel cell system for the UUV (무인잠수정용 연료전지 시스템 개념 연구)

  • Kim, Hyeong-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.751-760
    • /
    • 2014
  • The unmanned underwater vehicle(UUV) requires the highly dense energy source because of its limited space. Especially, for the UUV designed for long-term operation, it should be reviewed first whether it is possible to install the energy source against required total power. Therefore, this study identifies whether it is possible to install the energy source for the energy requirement of the UUV. And fuel and oxidizer requirement for the fuel cell system are calculated to determine its location and layout inside of the vehicle. Finally, we design the closed type 1kW polymer-electrolytic fuel cell system and check the applicability to underwater operations with UUV.

A Study on Manufacturing and Structural Test of Wind Turbine System Blade using Natural Composite (자연섬유 복합재료 풍력 발전 시스템 블레이드 제작 및 구조 시험 연구)

  • Park, Hyun Bum
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.30-35
    • /
    • 2017
  • In this work, a manufacturing and structural test of 1kW class horizontal axis wind turbine blade using natural-fiber composite was performed. The aerodynamic design of blade was performed after investigation on design requirement. The structural design load was investigated after aerodynamic design of blade. And also, structural design of blade was carried out. The structural design of blade was carried out using the simplified methods such as the netting rule and the rule of mixture applied to composite. The structural safety of the designed blade structure is investigated through the various load cases, stress, deformation and buckling analyses using the FEM method. Finally, the blade manufacturing and structural test using natural composite was carried out.