• 제목/요약/키워드: 14-3-3 associated proteins

검색결과 68건 처리시간 0.027초

Helicobacterpylori에 감염된 위상피세포에서 14-3-3 결합 단백질의 변화 (14-3-3-Associated Proteins in Helicobacter pylori-Infected Gastric Epithelial Cells)

  • 정혜연
    • 한국식품영양학회지
    • /
    • 제24권2호
    • /
    • pp.258-267
    • /
    • 2011
  • 14-3-3 is a highly conserved, ubiquitously expressed protein family. It associates with diverse cellular proteins through its specific phosphoserine/phosphothreonine-binding activity and thus contributes to the regulation of crucial cellular processes such as metabolism, signal transduction, cell-cycle control, apoptosis, protein trafficking, transcription and stress responses. This study aims to determine changes in levels of 14-3-3 isoforms and 14-3-3 - associated proteins in Helicobacter pylori(H. pylori)-infected gastric epithelial AGS cells. AGS cells were stimulated with H. pylori(NCTC 11637) at the ratio of 300:1(bacterium:cell). Western blot analysis revealed that 14-3-3 $\sigma$ was elevated at 3 hr after H. pylori treatment. Other isoforms were not significantly affected by H. pylori infection. Using immunoprecipitation to 14-3-3 $\sigma$, followed by proteomic analysis, we found that S phase kinase associated protein isoform 2 bound to 14-3-3 $\sigma$ has increased. In contrast, three proteins (DEAD-box polypeptide 3, heterogeneous nuclear ribonucleoprotein H2 and WD repeat-containing protein isoform 1) bound to 14-3-3 decreased by H. pylori infection. Our results suggest that 14-3-3 may play an important regulatory role in H. pylori-induced signal transduction in gastric epithelial cells.

Prediction of male fertility using Ras-related proteins

  • Jeong-Won, Bae;Ju-Mi, Hwang;Woo-Sung, Kwon
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1024-1034
    • /
    • 2022
  • Identifying effective biomarkers for the diagnosis of male fertility is crucial for improving animal production and treating male infertility in humans. Ras-related proteins (Rab) are associated with morphological and motion kinematic functions in spermatozoa. Moreover, Rab2A, a Rab protein, is a possible male fertility-related biomarker. The present study was designed to identify additional fertility-related biomarkers among the various Rab proteins. First, the expression of Rab proteins (Rab3A, 4, 5, 8A, 9, 14, 25, 27A, and 34A) from 31 duroc boar spermatozoa was measured before and after capacitation; correlation between Rab protein expression and litter size was evaluated by statistical analysis. The results showed that the expression of Rab3A, 4, 5, 8A, 9, and 25 before capacitation and Rab3A, 4, 5, 8A, 9, and 14 after capacitation were negatively correlated with litter size. Moreover, depending on the cutoff values calculated by receiver operating curves, an increase in litter size was observed when evaluating the ability of the Rab proteins to forecast litter size. Therefore, we suggest that Rab proteins may be potential fertility-related biomarkers that could help select superior sires in the livestock industry.

Proteomic characterization of differentially expressed proteins associated with no stress in retinal ganglion cells

  • Kim, Jum-Ji;Kim, Yeon-Hyang;Lee, Mi-Young
    • BMB Reports
    • /
    • 제42권7호
    • /
    • pp.456-461
    • /
    • 2009
  • Proteomic analyses of differentially expressed proteins in rat retinal ganglion cells (RGC-5) following S-nitrosoglutathione (GSNO), an NO donor, treatment were conducted. Of the approximately 314 protein spots that were detected, 19 were differentially expressed in response to treatment with GSNO. Of these, 14 proteins were up-regulated and 5 were down- regulated. Notably, an increase in GAPDH expression following GSNO treatment was detected in RGC-5 cells through Western blotting as well as proteomics. The increased GAPDH expression in response to GSNO treatment was accompanied by an increase in Herc6 protein, an E3 ubiquitin ligase. Moreover, GSNO treatment resulted in the translocation of GADPH from the cytosol to the nucleus and its subsequent accumulation. These results suggest that NO stress-induced apoptosis may be associated with the nuclear translocation and accumulation of GAPDH in RGC-5 cells.

Mining Proteins Associated with Oral Squamous Cell Carcinoma in Complex Networks

  • Liu, Ying;Liu, Chuan-Xia;Wu, Zhong-Ting;Ge, Lin;Zhou, Hong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4621-4625
    • /
    • 2013
  • The purpose of this study was to construct a protein-protein interaction (PPI) network related to oral squamous cell carcinoma (OSCC). Each protein was ranked and those most associated with OSCC were mined within the network. First, OSCC-related genes were retrieved from the Online Mendelian Inheritance in Man (OMIM) database. Then they were mapped to their protein identifiers and a seed set of proteins was built. The seed proteins were expanded using the nearest neighbor expansion method to construct a PPI network through the Online Predicated Human Interaction Database (OPHID). The network was verified to be statistically significant, the score of each protein was evaluated by algorithm, then the OSCC-related proteins were ranked. 38 OSCC related seed proteins were expanded to 750 protein pairs. A protein-protein interaction nerwork was then constructed and the 30 top-ranked proteins listed. The four highest-scoring seed proteins were SMAD4, CTNNB1, HRAS, NOTCH1, and four non-seed proteins P53, EP300, SMAD3, SRC were mined using the nearest neighbor expansion method. The methods shown here may facilitate the discovery of important OSCC proteins and guide medical researchers in further pertinent studies.

Reduction of Proliferation and Induction of Apoptosis are Associated with Shrinkage of Head and Neck Squamous Cell Carcinoma due to Neoadjuvant Chemotherapy

  • Sarkar, Shreya;Maiti, Guru Prasad;Jha, Jayesh;Biswas, Jaydip;Roy, Anup;Roychoudhury, Susanta;Sharp, Tyson;Panda, Chinmay Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6419-6425
    • /
    • 2013
  • Background: Neoadjuvant chemotherapy (NACT) is a treatment modality whereby chemotherapy is used as the initial treatment of HNSCC in patients presenting with advanced cancer that cannot be treated by other means. It leads to shrinkage of tumours to an operable size without significant compromise to essential oro-facial organs of the patients. The molecular mechanisms behind shrinkage due to NACT is not well elucidated. Materials and Methods: Eleven pairs of primary HNSCCs and adjacent normal epithelium, before and after chemotherapy were screened for cell proliferation and apoptosis. This was followed by immunohistochemical analysis of some cell cycle (LIMD1, RBSP3, CDC25A, CCND1, cMYC, RB, pRB), DNA repair (MLH1, p53) and apoptosis (BAX, BCL2) associated proteins in the same set of samples. Results: Significant decrease in proliferation index and increase in apoptotic index was observed in post-therapy tumors compared to pre-therapy. Increase in the RB/pRB ratio, along with higher expression of RBSP3 and LIMD1 and lower expression of cMYC were observed in post-therapy tumours, while CCND1 and CDC25A remained unchanged. While MLH1 remained unchanged, p53 showed higher expression in post-therapy tumors, indicating inhibition of cell proliferation and induction of apoptosis. Increase in the BAX/BCL2 ratio was observed in post-therapy tumours, indicating up-regulation of apoptosis in response to therapy. Conclusions: Thus, modulation of the G1/S cell cycle regulatory proteins and apoptosis associated proteins might play an important role in tumour shrinkage due to NACT.

Molecular characterization of Japanese indigenous grape cultivar 'Koshu' (Vitis vinifera) leaf and berry skin during grape development

  • Kobayashi, Hironori;Fujita, Keiko;Suzuki, Shunji;Takayanagi, Tsutomu
    • Plant Biotechnology Reports
    • /
    • 제3권3호
    • /
    • pp.225-241
    • /
    • 2009
  • We investigated the transcriptional profiles of Japanese indigenous grape cultivar 'Koshu' (Vitis vinifera) leaf and berry skin during ripening. In leaf, 64 genes were abundantly transcribed at the end of $v{\acute{e}}raison$ (14 weeks post-flowering), whereas the expression of 61 genes was upregulated at the end of ripening (20 weeks post-flowering). In berry skin, 67 genes were abundantly transcribed at the end of $v{\acute{e}}raison$, whereas the expression of 86 genes was upregulated at the end of ripening. Gene expression associated with biological processes was activated in both tissues at the end of ripening. The expression of genes associated with photosynthesis, sugar synthesis, anthocyanin synthesis, cinnamic acid synthesis, and amino acid metabolism was observed in leaf and berry skin during ripening, together with the accumulation of sugars, anthocyanins, cinnamic acids, and amino acids. Transcripts of AUX/IAA family proteins that repress the activities of auxin-induced proteins were expressed in berry skin at the end of $v{\acute{e}}raison$. Transcripts of genes related to the ubiquitin-proteasome system that degrades AUX/IAA family proteins were abundantly expressed in berry skin at the end of ripening, suggesting that the expansion of skin cells at $v{\acute{e}}raison$ is suppressed by AUX/IAA family proteins, and that the ubiquitin-proteasome system induces the expansion of skin cells during ripening by degrading AUX/IAA family proteins. These transcriptional profiles, which provide new information on the characteristics of 'Koshu' grapevine during ripening, may explain the unique characteristics of 'Koshu' grape in comparison with those of European grapes used for winemaking, and may contribute to the improvement of 'Koshu' grape quality.

Profiling of differential expressed proteins from various explants in Platycodon grandiflorum

  • Kim, Hye-Rim;Kwon, Soo Jeong;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Cho, Kab Yeon;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.131-131
    • /
    • 2017
  • Though the Platycodon grandiflorum, has a broad range of pharmacologic properties, but the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two-dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}2-fold$) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, the frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). Taken together, the protein profile may provide insight clues for better understanding the characteristics of proteins and its metabolic activities in various explants of this essential medicinal plant P. grandiflorum.

  • PDF

Proteome Profiling Unfurl Differential Expressed Proteins from Various Explants in Platycodon Grandiflorum

  • Kim, Hye-Rim;Kwon, Soo-Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag-Hyun;Cho, Kab-Yeon;Boo, Hee-Ock;Woo, Sun-Hee
    • 한국작물학회지
    • /
    • 제60권1호
    • /
    • pp.97-106
    • /
    • 2015
  • Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}$ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.

Proteomic Analysis of the Triglyceride-Rich Lipoprotein-Laden Foam Cells

  • Lu, Yanjun;Guo, Jianli;Di, Yong;Zong, Yiqiang;Qu, Shen;Tian, Jun
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.175-181
    • /
    • 2009
  • In hypertriglyceridaemic individuals, atherosclerogenesis is associated with the increased concentrations of very low density lipoprotein (VLDL) and VLDL-associated remnant particles. In vitro studies have suggested that VLDL induces foam cells formation. To reveal the changes of the proteins expression in the process of foam cells formation induced by VLDL, we performed a proteomic analysis of the foam cells based on the stimulation of differentiated THP-1 cells with VLDL. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, 14 differentially expressed proteins, containing 8 up-regulated proteins and 6 down-regulated proteins were identified. The proteins are involved in energy metabolism, oxidative stress, cell growth, differentiation and apoptosis, such as adipose differentiation-related protein (ADRP), enolase, S100A11, heat shock protein 27 and so on. In addition, the expression of some selected proteins was confirmed by Western blot and RT-PCR analysis. The results suggest that VLDL not only induces lipid accumulation, but also brings about foam cells diverse characteristics by altering the expression of various proteins.

The 14-3-3 Gene Function of Cryptococcus neoformans Is Required for its Growth and Virulence

  • Li, Jingbo;Chang, Yun C.;Wu, Chun-Hua;Liu, Jennifer;Kwon-Chung, Kyung J.;Huang, Sheng-He;Shimada, Hiro;Fante, Rob;Fu, Xiaowei;Jong, Ambrose
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.918-927
    • /
    • 2016
  • Cryptococcus neoformans is a life-threatening pathogenic yeast that causes devastating meningoencephalitis. The mechanism of cryptococcal brain invasion is largely unknown, and recent studies suggest that its extracellular microvesicles may be involved in the invasion process. The 14-3-3 protein is abundant in the extracellular microvesicles of C. neoformans, and the 14-3-3-GFP fusion has been used as the microvesicle's marker. However, the physiological role of 14-3-3 has not been explored. In this report, we have found that C. neoformans contains a single 14-3-3 gene that apparently is an essential gene. To explore the functions of 14-3-3, we substituted the promoter region of the 14-3-3 with the copper-controllable promoter CTR4. The CTR4 regulatory strain showed an enlarged cell size, drastic changes in morphology, and a decrease in the thickness of the capsule under copper-enriched conditions. Furthermore, the mutant cells produced a lower amount of total proteins in their extracellular microvesicles and reduced adhesion to human brain microvascular endothelial cells in vitro. Proteomic analyses of the protein components under 14-3-3-overexpressed and -suppressed conditions revealed that the 14-3-3 function(s) might be associated with the microvesicle biogenesis. Our results support that 14-3-3 has diverse pertinent roles in both physiology and pathogenesis in C. neoformans. Its gene functions are closely relevant to the pathogenesis of this fungus.