DOI QR코드

DOI QR Code

Proteomic Analysis of the Triglyceride-Rich Lipoprotein-Laden Foam Cells

  • Lu, Yanjun (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Guo, Jianli (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Di, Yong (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Zong, Yiqiang (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Qu, Shen (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology) ;
  • Tian, Jun (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology)
  • Received : 2009.04.21
  • Accepted : 2009.07.22
  • Published : 2009.09.30

Abstract

In hypertriglyceridaemic individuals, atherosclerogenesis is associated with the increased concentrations of very low density lipoprotein (VLDL) and VLDL-associated remnant particles. In vitro studies have suggested that VLDL induces foam cells formation. To reveal the changes of the proteins expression in the process of foam cells formation induced by VLDL, we performed a proteomic analysis of the foam cells based on the stimulation of differentiated THP-1 cells with VLDL. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, 14 differentially expressed proteins, containing 8 up-regulated proteins and 6 down-regulated proteins were identified. The proteins are involved in energy metabolism, oxidative stress, cell growth, differentiation and apoptosis, such as adipose differentiation-related protein (ADRP), enolase, S100A11, heat shock protein 27 and so on. In addition, the expression of some selected proteins was confirmed by Western blot and RT-PCR analysis. The results suggest that VLDL not only induces lipid accumulation, but also brings about foam cells diverse characteristics by altering the expression of various proteins.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Alexander, R.W. (1998). Atheroscleros is as a disease of redoxsensitive genes. Trans. Am. Clin Climatol. Assoc. 109, 129-146
  2. Argmann, C.A., Van Den Diepstraten, C.H., Sawyez, C.G., Edwards, J.Y., Hegele, R.A., Wolfe, B.M., and Huff, M.W. (2001). Transforming growth factor-$\beta$1 inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants. Arterioscler. Thromb. Vasc. Biol. 21, 2011-2018 https://doi.org/10.1161/hq1201.099426
  3. Aronis, A., Madar, Z., and Tirosh, Q. (2005). Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol. Med. 38, 1221-1230 https://doi.org/10.1016/j.freeradbiomed.2005.01.015
  4. Austin, M.A. (1999). Epidemiology of hypertriglyceridemia and cardiovascular disease. Am. J. Cardiol. 83, 13F-16F https://doi.org/10.1016/S0002-9149(99)00209-X
  5. Brasaemle, D.L., Barber, T., Wolins, N., Serrero, G., Blanchette, E.J., and Londos, C. (1997). Adipose differentiation-related protein is an ubiquitouslyexpressed lipid storage droplet associated protein. J. Lipid Res. 38, 2249-2263
  6. Byrne, C.D. (1999). Triglyceride-rich lipoproteins: are links with atherosclerosis mediated by a procoagulant and proinflammatory phenotype? Atherosclerosis 145, 1-15 https://doi.org/10.1016/S0021-9150(99)00110-0
  7. Carr, T.P., Andresen. C.J., and Rudel, L.L. (1993). Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin. Biochem. 26, 39-42 https://doi.org/10.1016/0009-9120(93)90015-X
  8. Chawla, A., Lee, C.H., Barak, Y., He, W., Rosenfeld, J., Liao, D., Han, J., Kang, H., and Evans, R.M. (2003). PPAR$\delta$ is a very low-density lipoprotein sensor in macrophages. Proc. Natl. Acad. Sci. USA 100, 1268-1273 https://doi.org/10.1073/pnas.0337331100
  9. Dichtl, W., Nilsson, L., Goncalves, I., Ares, M.P., Banfi, C., Calara, F., Hamsten, A., Eriksson, P., and Nilsson, J. (1999). Very lowdensity lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ. Res. 84, 1085-1094 https://doi.org/10.1161/01.RES.84.9.1085
  10. Duval, C., Auge, N., Frisach, M.F., Casteilla, L., Salvayre, R., and Negre-Salvayre, A. (2002). Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptordependent activation of glutathione peroxidase. Biochem. J. 367, 889-894 https://doi.org/10.1042/BJ20020625
  11. Evans, A.J., Sawyez, C.G., Wolfe, B.M., Connelly, P.W., Maguire, G.F., and Huff, M.W. (1993). Evidence that cholesteryl ester and triglyceride accumulation in J774.2 macrophages induced by very low density subfractions occurs by different mechanisms. J. Lipid Res. 34, 703-717
  12. Frank, J.S., and Fogelman, A.M. (1989). Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultrarapid freezing and freeze-etching. J. Lipid Res. 30, 967-978
  13. Gao, J., and Serrero, G. (1999). Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J. Biol. Chem. 274, 16825-16830 https://doi.org/10.1074/jbc.274.24.16825
  14. Gordon, D., Reidy, M.A., Benditt, E.P., and Schwartz, S.M. (1990). Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. USA 87, 4600-4604 https://doi.org/10.1073/pnas.87.12.4600
  15. Han, D., Williams, E., and Cadenas, E. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 2001, 353, 411-416 https://doi.org/10.1042/0264-6021:3530411
  16. Hokanson, J.E., and Austin, M.A. (1996). Plasma triglyceride level is a risk factor for cardiovascular disease independent of high density lipoprotein cholesterol levels: a meta-analysis of population-based prospective studies. J. Cardiovasc. Risk 3, 213-219 https://doi.org/10.1097/00043798-199604000-00014
  17. Imamura, M., Inoguchi, T., Ikuyama, S., Taniguchi, S., Kobayashi, K., Nakashima, N., and Nawata, H. (2002). ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am. J. Physiol. Endocrinol. Metab. 283, 775-783 https://doi.org/10.1152/ajpendo.00040.2002
  18. Inada, H., Naka, M., Tanaka, T., Davey, G.E., and Heizmann, C.W. (1999). Human S100A11 exhibits differential steady-state RNA levels in various tissues and a distinct subcellular localization. Biochem. Biophys. Res. Commun. 263, 135-138 https://doi.org/10.1006/bbrc.1999.1319
  19. Kanamori, T., Takakura, K., Mandai, M., Kariya, M., Fukuhara, K., Sakaguchi, M., Huh, N.H., Saito, K., Sakurai, T., Fujita, J., et al. (2004). Increased expression of calcium-binding protein S100 in human uterine smooth muscle tumours. Mol. Hum. Reprod. 10, 735-742 https://doi.org/10.1093/molehr/gah100
  20. Larigauderie, G., Cuaz-Perolin, C., Younes, A.B., Furman, C., Lasselin, C., Copin, C., Jaye, M., Fruchart, J.C., and Rouis, M. (2006). Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of boxidation. FEBS J. 273, 3498-3351 https://doi.org/10.1111/j.1742-4658.2006.05357.x
  21. Martin-Ventura, J.L., Duran, M.C., Blanco-Colio, L.M., Meilhac, O., Leclercq, A., Michel, J.B., Jensen, O.N., Hernandez-Merida, S., Tunon, J., Vivanco, F., et al. (2004). Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation 110, 2216-2219 https://doi.org/10.1161/01.CIR.0000136814.87170.B1
  22. Martin-Ventura, J.L., Nicolas, V., Houard, X., Blanco-Colio, L.M., Leclercq, A., Egido, J., Vranckx, R., Michel, J.B., and Meilhac, O. (2006). Biological significance of decreased HSP27 in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 1337-1343 https://doi.org/10.1161/01.ATV.0000220108.97208.67
  23. Memon, A.A., Sorensen, B.S., Meldgaard, P., Fokdal, L., Thykjaer, T., and Nexo, E. (2005). Down-regulation of S100C is associated with bladder cancer progression and poor survival. Clin. Cancer Res. 11, 606-611
  24. Nordestgaard, B.G., Wootton, R., and Lewis, B. (1995). Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo: Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler. Thromb. Vasc. Biol. 15, 534-542 https://doi.org/10.1161/01.ATV.15.4.534
  25. Pedrini, M.T., Kranebitter, M., Niederwanger, A., Kaser, S., Engl. J., Debbage, P., Huber, L.A., and Patsch, J.R. (2005). Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling in L6 skeletal muscle cells independently of nonesterified fatty acid levels. Diabetologia 48, 756-766 https://doi.org/10.1007/s00125-005-1684-8
  26. Persson, J., Nilsson, J., and Lindholm, M.W. (2006). Cytokine response to lipoprotein lipid loading in human monocyte-derived macrophages. Lipids Health Dis. 5, 17-24 https://doi.org/10.1186/1476-511X-5-17
  27. Persson, J., Degerman, E., Nilsson, J., and Lindholm, M.W. (2007). Perilipin and adipophilin expression in lipid loaded macrophages. Biochem. Biophys. Res. Commun. 363, 1020-1026 https://doi.org/10.1016/j.bbrc.2007.09.074
  28. Rapp, J.H., Lespine, A., Hamilton, R.L., Colyvas, N., Chaumeton, A.H., Tweedie-Hardman. J., and Kane, J.P. (1994). Triglyceriderich lipoproteins isolated by selected affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb Vasc. Biol. 14, 1767-1774 https://doi.org/10.1161/01.ATV.14.11.1767
  29. Redgrave, T.G., Roberts, D., and West, C.E. (1975). Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal. Biochem. 65, 42-49 https://doi.org/10.1016/0003-2697(75)90488-1
  30. Ricote, M., Valledor, A.F., and Glass, C.K. (2004). Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid homeostasis, Inflammation, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 230-239 https://doi.org/10.1161/01.ATV.0000103951.67680.B1
  31. Rosenfeld, M.E., and Ross, R. (1990). Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 10, 680-687 https://doi.org/10.1161/01.ATV.10.5.680
  32. Schmid, G.M., Converset, V., Walter, N., Sennitt, M.V., Leung, K.Y., Byers, H., Ward, M., Hochstrasser, D.F., Cawthorne, M.A., and Sanchez, J.C. (2004). Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4, 2270-2282 https://doi.org/10.1002/pmic.200300810
  33. Shelness, G.S., and Sellers, J.A. (2001). Very-low-density lipoprotein assembly and secretion. Curr. Opin. Lipidol. 12, 151-157 https://doi.org/10.1097/00041433-200104000-00008
  34. Stollenwerk, M.M., Schiopu, A., Fredrikson, G.N., Dichtl, W., Nilsson, J., and Ares, M.P. (2005). Very low density lipoprotein potentiates tumor necrosis factor-alpha expression in macrophages. Atherosclerosis. 179, 247-254 https://doi.org/10.1016/j.atherosclerosis.2004.12.002
  35. Sukhanov, S., Higashi, Y., Shai, S.Y., Itabe, H., Ono, K., Parthasarathy, S., and Delafontaine, P. (2006). Novel effect of oxidized low-density lipoprotein: cellular ATP depletion via downregulation of glyceraldehyde-3-phosphate dehydrogenase. Circ. Res. 99, 191-200 https://doi.org/10.1161/01.RES.0000232319.02303.8c
  36. Vanderlaan, P.A., Reardon, C.A., Thisted, R.A., and Getz, G.S. (2009). VLDL best predicts aortic root atherosclerosis in low density lipoprotein receptor deficient mice. J. Lipid Res. 50, 376-385 https://doi.org/10.1194/jlr.M800284-JLR200

Cited by

  1. Moesin is a biomarker for the assessment of genotoxic carcinogens in mouse lymphoma vol.33, pp.2, 2009, https://doi.org/10.1007/s10059-012-2271-8
  2. Identification of EBP50 as a specific biomarker for carcinogens via the analysis of mouse lymphoma cellular proteome vol.33, pp.3, 2009, https://doi.org/10.1007/s10059-012-2280-7
  3. The Proteome of Cholesteryl-Ester-Enriched Versus Triacylglycerol-Enriched Lipid Droplets vol.9, pp.8, 2009, https://doi.org/10.1371/journal.pone.0105047