• Title/Summary/Keyword: 1-commutative algebra

Search Result 83, Processing Time 0.024 seconds

A CONSTRUCTION OF MAXIMAL COMMUTATIVE SUBALGEBRA OF MATRIX ALGEBRAS

  • Song, Young-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.241-250
    • /
    • 2003
  • Let (B, m$_{B}$, k) be a maximal commutative $textsc{k}$-subalgebra of M$_{m}$(k). Then, for some element z $\in$ Soc(B), a k-algebra R = B[X,Y]/I, where I = (m$_{B}$X, m$_{B}$Y, X$^2$- z,Y$^2$- z, XY) will create an interesting maximal commutative $textsc{k}$-subalgebra of a matrix algebra which is neither a $C_1$-construction nor a $C_2$-construction. This construction will also be useful to embed a maximal commutative $textsc{k}$-subalgebra of matrix algebra to a maximal commutative $textsc{k}$-subalgebra of a larger size matrix algebra.gebra.a.

INTUITIONISTIC FUZZY COMMUTATIVE IDEALS OF BCK-ALGEBRAS

  • Jun, Young-Bae;Lee, Dong-Soo;Park, Chul-Hwan
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.73-84
    • /
    • 2008
  • After the introduction of fuzzy sets by Zadeh, there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Aranassov is one among them. In this paper, we apply the concept of an intuitionistic fuzzy set to commutative ideals in BCK-algebras. The notion of an intuitionistic fuzzy commutative ideal of a BCK-algebra is introduced, and some related properties are investigated. Characterizations of an intuitionistic fuzzy commutative ideal are given. Conditions for an intuitionistic fuzzy ideal to be an intuitionistic fuzzy commutative ideal are given. Using a collection of commutative ideals, intuitionistic fuzzy commutative ideals are established.

  • PDF

C32-CONSTRUCTION ON Mn(κ)

  • Song, Youngkwon
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.23-32
    • /
    • 2004
  • Let (B, $m_B$, ${\kappa}$) be a maximal commutative ${\kappa}$-subalgebra of a matrix algebra $M_n(\kappa)$. We will construct a maximal commutative ${\kappa}$-subalgebra (R, $m$, ${\kappa}$) of $M_n+3(\kappa)$ from the algebra B such that the algebra R has dimension greater than the dimension of B by 3. Moreover, we will show a $C_i$-construction doesn't imply a $C^3_2$-construction for $i=1,2$.

  • PDF

THE SPHERICAL NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon;Oh, Sei-Qwon;Park, Chun-Gil
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.331-340
    • /
    • 1998
  • We define the spherical non-commutative torus $L_{\omega}$/ as the crossed product obtained by an iteration of l crossed products by actions of, the first action on C( $S^{2n+l}$). Assume the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus $A_{p}$ with a matrix algebra $M_{m}$ ( ) (m > 1). We prove that $L_{\omega}$/ $M_{p}$ (C) is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{mp}$ (C), and that the tensor product of $L_{\omega}$/ with a UHF-algebra $M_{p{\infty}}$ of type $p^{\infty}$ is isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) $M_{p{\infty}}$ if and only if the set of prime factors of m is a subset of the set of prime factors of p. Furthermore, it is shown that the tensor product of $L_{\omega}$/, with the C*-algebra K(H) of compact operators on a separable Hilbert space H is not isomorphic to C(Prim( $L_{\omega}$/)) $A_{p}$ $M_{m}$ (C) K(H) if Prim( $L_{\omega}$/) is homeomorphic to $L^{k}$ (n)$\times$ $T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.$T^{l'}$ for k and l' non-negative integers (k > 1), where $L^{k}$ (n) is the lens space.e.

  • PDF

HEYTING ALGEBRA AND t-ALGEBRA

  • Yon, Yong Ho;Choi, Eun Ai
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.13-26
    • /
    • 1998
  • The purpose of this note is to study the relation between Heyting algebra and t-algebra which is the dual concept of BCK-algebra. We define t-algebra with binary operation ${\rhd}$ which is a generalization of the implication in the Heyting algebra, and define a bounded ness and commutativity of it, and then characterize a Heyting algebra and a Boolean algebra as a bounded commutative t-algebra X satisfying $x=(x{\rhd}y){\rhd}x$ for all $x,y{\in}X$.

  • PDF

ON THE STRUCTURE OF NON-COMMUTATIVE TORI

  • Boo, Deok-Hoon;Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The non-commutative torus $A_{\omega}=C^*(\mathbb{Z}^n,{\omega})$ may be realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega}}$ with fibres $C^*(\mathbb{Z}^n/S_{\omega},{\omega}_1)$ for some totally skew multiplier ${\omega}_1$ on $\mathbb{Z}^n/S_{\omega}$. It is shown that $A_{\omega}{\otimes}M_l(\mathbb{C})$ has the trivial bundle structure if and only if $\mathbb{Z}^n/S_{\omega}$ is torsion-free.

  • PDF

ON ANTI FUZZY PRIME IDEALS IN BCK-ALGEBRAS

  • Jeong, Won Kyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 1999
  • In this paper, we introduce the notion of anti fuzzy prime ideals in a commutative BCK-algebra and obtain some properties of it.

  • PDF

A SOLUTION OF EGGERT'S CONJECTURE IN SPECIAL CASES

  • KIM, SEGYEONG;PARK, JONG-YOULL
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.399-404
    • /
    • 2005
  • Let M be a finite commutative nilpotent algebra over a perfect field k of prime characteristic p and let $M^p$ be the sub-algebra of M generated by $x^p$, $x{\in}M$. Eggert[3] conjectures that $dim_kM{\geq}pdim_kM^p$. In this paper, we show that the conjecture holds for $M=R^+/I$, where $R=k[X_1,\;X_2,\;{\cdots},\;X_t]$ is a polynomial ring with indeterminates $X_1,\;X_2,\;{\cdots},\;X_t$ over k and $R^+$ is the maximal ideal of R generated by $X_1,\;X_2,{\cdots},\;X_t$ and I is a monomial ideal of R containing $X_1^{n_1+1},\;X_2^{n_2+1},\;{\cdots},\;X_t^{n_t+1}$ ($n_i{\geq}0$ for all i).

  • PDF