A SOLUTION OF EGGERT'S CONJECTURE IN SPECIAL CASES

SEGYEONG KIM AND JONG-YOULL PARK

Abstract. Let M be a finite commutative nilpotent algebra over a perfect field k of prime characteristic p and let M^p be the subalgebra of M generated by $x^p, x \in M$. Eggert[3] conjectures that $\dim_k M \geq p\dim_k M^p$.

In this paper, we show that the conjecture holds for $M=R^+/I$, where $R=k[X_1,X_2,\cdots,X_t]$ is a polynomial ring with indeterminates X_1,X_2,\cdots,X_t over k and R^+ is the maximal ideal of R generated by X_1,X_2,\cdots,X_t and I is a monomial ideal of R containing $X_1^{n_1+1},X_2^{n_2+1},\cdots,X_t^{n_t+1}$ $(n_i\geq 0 \text{ for all } i).$

1. Introduction

Let k be a perfect field of prime characteristic p and let M be a finite nilpotent algebra over k and let M^p be the subalgebra of M generated by $x^p, x \in M$.

In [3] , Eggert investigated between the algebra structure of M and its quasi algebra group and he conjectured the following inequality

$$(1-1) \dim_k M \ge p \dim_k M^p$$

He proved the inequality (1-1) of the cases $\dim_k M^p \leq 2$ in [3] and Stark also proved it of the same cases in [4]. In case $\dim_k M^p = 3$, Bautista proved in [1].

Received April 28, 2005. Revised August 30, 2005.

2000 Mathematics Subject Classification: 13B25, 13P10.

Key words and phrases: finite commutative nilpotent algebra, monomial ideal.

In this paper, we show that the inequality (1-1) holds for a finite commutative nilpotent algebra $M = R^+/I$, where $R = k[X_1, X_2, \dots, X_t]$ is a polynomial ring with indeterminates X_1, X_2, \dots, X_t over k and R^+ is the maximal ideal of R generated by X_1, X_2, \dots, X_t and I is a monomial ideal of R containing $X_1^{n_1+1}, X_2^{n_2+1}, \dots, X_t^{n_t+1}$ $(n_i \geq 0 \text{ for all } i)$.

Now, we consider a polynomial ring R = k[X] with an indeterminate X over a perfect field k of prime characteristic p and let R^+ be the maximal ideal of R generated by X and let I be an ideal of R generated by X^{n+1} . Then we have a finite commutative nilpotent algebra $M = R^+/I$ and the inequality (1-1) holds for this finite commutative nilpotent algebra M.

THEOREM 1.1. Under the same notation as above, we have $dim_k M \ge pdim_k M^p$.

proof. If p > n, since $M^p = 0$, we are done. Now, assume $p \le n$ and $n = pn' + r(0 \le r < p)$. As k-vector spaces, x, x^2, \dots, x^n is a basis of M, where x is the image of X under the canonical projection $R^+ \longrightarrow M$. Since the characteristic of k is p, $x^p, x^{2p}, \dots, x^{pn'}$ is a basis of the k-vector space M^p . Hence $\dim_k M = n \ge pn' = p\dim_k M^p$. \square

2. main theorem

Let k be a perfect field of prime characteristic p and let $R = k[X_1, X_2, \cdots, X_t]$ be a polynomial ring with indeterminates X_1, X_2, \cdots, X_t over k and let R^+ be the maximal ideal of R generated by X_1, X_2, \cdots, X_t . For any monomial ideals I of R containing $X_1^{n_1+1}, X_2^{n_2+1}, \cdots, X_t^{n_t+1}$ ($n_i \geq 0$ for all i), we have a finite commutative nilpotent algebra $M = R^+/I$. In this section, we will show that the Eggert's Conjecture is true for those M. For the proof, we need a proposition and a lemma.

PROPOSITION 2.1. [2: Ch2.4, Lemma3] Let I be a monomial ideal of a polynomial ring $k[X_1, X_2, \dots, X_t]$ and let $f \in k[X_1, X_2, \dots, X_t]$.

Then $f \in I$ if and only if f is a k-linear combination of monomials in I.

Let $\mathbb{Z}_{\geq 0}^t = \{(a_1, a_2, \cdots, a_t) \mid \text{ for all } i, a_i \text{ is a nonnegative integer } \}$. We say $(a_1, a_2, \cdots, a_t) > (b_1, b_2, \cdots, b_t)$ for (a_1, a_2, \cdots, a_t) , $(b_1, b_2, \cdots, b_t) \in \mathbb{Z}_{\geq 0}^t$ if, in $(a_1 - b_1, a_2 - b_2, \cdots, a_t - b_t)$, the left-most nonzero entry is positive. By Proposition 4 of [2, Ch2.2], > is a total order on $\mathbb{Z}_{\geq 0}^t$. Let $(n_1, n_2, \cdots, n_t) > (0, 0, \cdots, 1)$ in $\mathbb{Z}_{\geq 0}^t$ and let

$$D = \{(a_1, a_2, \cdots, a_t) \in \mathbb{Z}_{\geq 0}^t \mid (0, 0, \cdots, 1) \leq (a_1, a_2, \cdots, a_t)$$

$$\leq (n_1, n_2, \cdots, n_t) \},$$

$$D_{i_1 i_2 \cdots i_{t-1}} = \{(i_1, i_2, \cdots, i_{t-1}, j) \mid j = 1, 2, \cdots, n_t \}$$

$$(0 \leq i_j \leq n_j, \quad j = 1, 2, \cdots, t-1),$$

$$D^0 = \{(i_1, i_2, \cdots, i_{t-1}, 0) \mid (i_1, i_2, \cdots, i_{t-1}, 0) \in D\},$$

$$D' = \{(i_1, i_2, \cdots, i_t) \in D \mid i_t > n_t \},$$

and let

$$D_I = \{(a_1, a_2, \cdots, a_t) \in \mathbb{Z}_{>0}^t \mid X_1^{a_1} X_2^{a_2} \cdots X_t^{a_t} \notin I\}.$$

Then we have a partition of D as the following by the Lemma 2 of [2: Ch2.4,].

LEMMA 2.2. Under the same notations as above, we have the following;

- i) $(i_1, i_2, \dots, i_{t-1}) \neq (j_1, j_2, \dots, j_{t-1})$ with $0 \leq i_s, j_s \leq n_s$ for all $s = 1, 2, \dots, t-1$ if and only if $D_{i_1 i_2 \dots i_{t-1}} \cap D_{j_1 j_2 \dots j_{t-1}} = \emptyset$.
- ii) $D_{i_1 i_2 \cdots i_{t-1}} \cap D^0 = \emptyset$ and $D_{i_1 i_2 \cdots i_{t-1}} \cap D' = \emptyset$ with $0 \le i_s \le n_s$ for all $s = 1, 2, \cdots, t-1$.
- iii) $D^0 \cap D' = \emptyset$.

$$D = \{ \bigcup_{0 \le i_s \le n_s (s=1, 2, cdots, t-1)} D_{i_1 i_2 \cdots i_{t-1}} \} \bigcup D^0 \bigcup D'.$$

v)
$$X^{i_1}X^{i_2}\cdots X^{i_t}\in I$$
 for all $(i_1i_2\cdots i_t)\in D'$.
vi)

$$D_I \subseteq \{\bigcup_{0 \le i_s \le n_s(s=1,2,cdots,t-1)} D_{i_1 i_2 \cdots i_{t-1}}\} \bigcup D^0.$$

Now we are ready to prove our main theorem.

THEOREM 2.3. Let k be a perfect field of prime characteristic p and let $R = k[X_1, X_2, \cdots, X_t]$ be a polynomial ring with indeterminates X_1, X_2, \cdots, X_t over k and let R^+ be the maximal ideal of R generated by X_1, X_2, \cdots, X_t . For any monomial ideal I of R containing $X_1^{n_1+1}, X_2^{n_2+1}, \cdots, X_t^{n_t+1}$ ($n_i \geq 0$ for all i), $M = R^+/I$ is a finite commutative nilpotent algebra over k and $\dim_k M \geq p \cdot \dim_k M^p$.

proof. We will do induction on the number t of variables X_1, X_2, \cdots, X_t . Theorem 1.1 implies the initial step of this induction. Assume that the assertion is true for all less number of variables than t and assume t > 1. Let I be a monomial ideal of R containing $X_1^{n_1+1}, X_2^{n_2+1}, \cdots, X_t^{n_t+1}$ $(n_i \geq 0 \text{ for all } i)$. We may assume that for all $i, X_i^{n_i} \notin I$ and $X_i^{n_i+1} \in I$. Let

$$D_I = \{(a_1, a_2, \cdots, a_t) \in \mathbb{Z}_{\geq 0}^t \mid X_1^{a_1} X_2^{a_2} \cdots X_t^{a_t} \notin I\}.$$

By Proposition 2.1, $\{x_1^{a_1}x_2^{a_2}\cdots x_t^{a_t}\mid (a_1,a_2,\cdots,a_t)\in D_I\}$ is a basis of M as a k-vector space, where x_i is the image of X_i under the canonical projection $R^+\longrightarrow M$. Since $D_I\subset D$, by Lemma 2.2,

$$D_I = \{ \bigcup_{0 \le i_s \le n_s (s=1, 2, \dots, t-1)} (D_I \cap D_{i_1 i_2 \dots i_{t-1}}) \} \bigcup (D^0 \cap D_I).$$

Since M^p can be generated by

$$\{x_1^{pa_1}x_2^{pa_2}\cdots x_t^{pa_t} \mid (a_1, a_2, \cdots, a_t) \in D_I\}$$

$$\mathcal{B} = \{x_1^{pa_1} x_2^{pa_2} \cdots x_t^{pa_t} \mid (a_1, a_2, \cdots, a_t) \in D_I, (pa_1, pa_2, \cdots, pa_t) \in D_I\}$$

forms a basis of M^p as a k-vector space. Put

$$D_I^p = \{(a_1, a_2, \cdots, a_t) \mid x_1^{a_1} x_2^{a_2} \cdots x_t^{a_t} \in \mathcal{B}\}.$$

Since $D_I^p \subset D$, again by Lemma 2.2,

$$D_I^p = \{ \bigcup_{0 \le i_s \le n_s (s=1,2,\cdots,t-1)} (D_I^p \cap D_{i_1 i_2 \cdots i_{t-1}}) \} \bigcup (D_I^p \cup D^0).$$

Let $R_1 = k[X_1, X_2, \dots, X_{t-1}]$ be a polynomial ring with indeterminates X_1, X_2, \dots, X_{t-1} over k and let R_1^+ be the maximal ideal of R_1 generated by X_1, X_2, \dots, X_{t-1} and let J be the inverse image of I under the canonical inclusion $R_1^+ \longrightarrow R^+$. Then J is a monomial ideal of R_1^+ containing $X_1^{n_1+1}, X_2^{n_2+1}, \dots, X_{t-1}^{n_{t-1}+1}$ and hence, $M_1 = R_1^+/J$ becomes a finite commutative nilpotent algebra over k. By induction, we have $\dim_k M_1 \geq p \dim_k M_1^p$ and by our construction of D_0 , $\dim_k M_1 = \operatorname{Card}(D_0 \cap D_I)$ and $\dim_k M_1^p = \operatorname{Card}(D_0 \cap D_I^p)$. Now, it is enough to show that

$$\operatorname{Card}(D_I \cap D_{i_1 i_2 \cdots i_{t-1}}) \ge p \cdot \operatorname{Card}(D_I^p \cap D_{i_1 i_2 \cdots i_{t-1}})$$

for all $(i_1, i_2, \dots, i_{t-1})$ between $(0, 0, \dots, 0)$ and $(n_1, n_2, \dots, n_{t-1})$. Suppose $(i_1, i_2, \dots, i_{t-1}, j) \in D_I$ and $(i_1, i_2, \dots, i_{t-1}, j+1) \notin D_I$. Then by the choice of D_I , $(i_1, i_2, \dots, i_{t-1}, i) \in D_I$ for $0 \le i \le j$ and $(i_1, i_2, \dots, i_{t-1}, i) \notin D_I$ for $j < i \le n_t$. So we have

$$\operatorname{Card}(D_I \cap D_{i_1 i_2 \cdots i_{t-1}}) \ge p \cdot \operatorname{Card}(D_I^p \cap D_{i_1 i_2 \cdots i_{t-1}}).$$

In case $D_{i_1 i_2 \cdots i_{t-1}} \cap D_I = \emptyset$ we also have the same inequality. This completes the proofs.

References

- [1] R. Bautista, *Units of finite algebras*, An. Inst. Mat. Univ. Nac. Autonoma, Mexico **16** (1976), 1–78.
- [2] D. Cox, J. Little, and D. O'Szhea, Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, Undergraduate. Texts in Math., Springer-Verlag, New York, 1992.

- [3] N. Eggert, Quasi Regular Groups of Finite Commutative Nilpotent Algebras, Pacific J. Math. 36 (1971), 631-634.
- [4] C. Stack, Dimensions of Nilpotent algebras over Fields of prime characteristic, Pacific J. Math. 176 (1996), 263–266.

Segyeong Kim

Department of Mathematics Education

Chonnam National University

Young-Bong 300, Buk-Gu, Gwangju 500-757, Korea(south)

Email: ongime@yahoo.co.kr

Jong-Youll Park

Department of Mathematics Education

Chonnam National University

Young-Bong 300, Buk-Gu, Gwangju 500-757, Korea(south)

Email: parkjy@chonnam.ac.kr