• Title/Summary/Keyword: 1일 압축강도

Search Result 304, Processing Time 0.031 seconds

A Study on the Strength, Drying Shrinkage and Carbonation Properties of Lightweight Aggregate Mortar with Recycling Water (회수수를 사용한 경량골재 모르타르의 강도, 건조수축 및 중성화 특성에 관한 연구)

  • Oh, Tae-Gue;Kim, Ji-Hwan;Bae, Sung-Ho;Choi, Se-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.391-397
    • /
    • 2020
  • This study is to compare and analyze the strength, drying shrinkage and carbonation properties of lightweight aggregate mortar using recycling water as prewetting water and mixing water. The flow, compressive strength, split tensile strength, drying shrinkage and carbonation depth of lightweight aggregate mortar with recycling water were measured. As test results, the mortar flow was similar in all mixes regardless of the recycling water content. The compresseive strength of the RW5 mix with 5% recycling water as prewetting water and mixing water was the highest value, about 53.9 MPa after 28 days. In addition, the tensile strength of lightweight mortar was about 3.4 to 3.8 MPa, indicating 7 to 9% of the compressive strength value regardless of recycling water content. In the case of drying shrinkage, the RW2.5 mix using 2.5% recycling water showed the lowest shrinkage rate as about 0.107% at 56 days. The drying shrinkage of the plain mix without recycling water was relatively higher than the RW2.5 and RW5 mix. The RW5 mix showed lowest carbonation depth compared to other mixes. In this study, the RW5 lightweight aggregate mortar with 5% recycling water exhibits excellent compressive strength and carbonation resistance. Therefore, it is considered that if the recycling water, a by-product of the concrete industry, is properly used as prewetting water and mixing water of lightweight mortar and concrete, it will be possible to increase the recycling rate of the by-product and contribute to improve the property of lightweitht aggregate mortar and concrete.

Hydration of Active-Belite Cement with Gypsum and Slag (석고와 슬래그를 첨가한 Active-Belite Cement의 수화특성)

  • 이성호;박동철;김남호;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.330-330
    • /
    • 1998
  • Active belite cement clinkers were synthsized by using natural raw materials with borax and calcium phosphate ({{{{ {Ca }_{3 }( {PO}_{4}) }}2) In both case {{{{alpha ^、 {C }_{2 }S }} were formed but borax was more efficient. The cement syn-thesized with the addition of borax was hydrated with the addition of anhydrite(5 wt%) and slag(30wt%, 40wt% 50wt%) The addition of 50wt% slag with anhydrite was good for strength development in 7days and the compressive strength was developed to twice than no addition of slag at 28 days strength.

An Experimental Study on the Properties of Compressive Strength of Fly Ash Replaced Antiwash out Underwater Concrete Considering Marine Environment (해양환경을 고려한 플라이애쉬${\cdot}$수중 불분리 콘크리트의 압축강도에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Jung, Hee-Hyo;Moon, Je-Kil
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • When the concrete is cast at the sea, there are lots of restrictions in the working process being different from in land, and the concrete is suffered from the physical and chemical action in terms of marine environment. The compressive strength was measured after antiwash out underwater concrete mixed with fly ash had been cast and cured in order to produce the endurable high performance concrete, and then its characteristic was discussed by comparing one cured in air with in fresh water, and the effect of fly ash usage under the properly controled sea water temperature of $15{\pm}3^{\circ}C$ was also covered. The present work showed that the proper usage of fly ash was obtained at the condition of around 10% of substituted binder weight under the structure required the early age strength, and at the condition of over 40% if considering its durability and economy.

Studies on the Hardening of Briquette Ash (연탄재의 경화(硬化)에 관(關)한 연구(硏究))

  • Kim, Seong-Wan;Sung, Chan-Yong
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 1978
  • Comparative studies have been carried out to elucidate effects of 3 types of Japanese hardening agents and cement on the compressive and tensil strength of solidified briquette ashes with different ages, when various mixing ratio were applied. 1. The hardening agent, especially type C, were appeared to be better than the cement to obtain higher compressive and tensil strength of the products. 2. The compressive strength when mixing ratio of 1 : 3 applied were : $177.6kg/cm^2$. for type C; $168.6kg/cm^2$ for type A; and $155.94kg/cm^2$ for type B. 3. The tensil strength when mixing ratio of 1 : 3 applied were: $24.63kg/cm^2$ for type C ; $23.14kg/cm^2$ for type B; and $22.45kg/cm^2$ for type A. 4. Although the solidified briquette ashes were found to be not as strong as cement mortar, it is (considered that they could be used instead of low-strength concrete, and that they could contribute to reduce the amount of terminal city-wastes then to reduce pollutions caused by the wastes.

  • PDF

A Study on Chemical Resistance of Cement Mortar Blended with Thermally Activated Diatomite containing Heavy Metals form EAF Dust (EAF Dust사의 중금속을 함침한 활성 규조토가 혼합된 시멘트 모르터의 내화학성에 관한 연구)

  • 류한길;임남웅;박종옥
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.143-151
    • /
    • 1997
  • Chemical resistance of the cement mortar containing the Thermally Activated Diaomite(TAD) and H.M.(Heavy Metals) has been studied. The H.M.. extracted from EAF(Electrica1 Arc Furnace) Dust. were saturated with diatomite. The diatomite was then thermally activated at $750{\circ}C$ for 30minutes and powdeled. The powder was mixed with a portland cement on a weight basis from 0%. 2.5%. 5.0%. 10%. 20%. The optimum mixture. after those mixtures were subjected to compressive strength(7 and 28days) and leaching bchaviour of H.M.. was tested for its experiment on Wet/Dry cycles and chemical resistance(e.q. imrncrsion in 5%(Conc.) of H2S04, CaC12 and hlgSO4. It was shown that the cement, mortar containing 10% of' P.D. gave a rise to the remarkable increase in compressive strength. The compressive strength was generally decrease beyond the addition of 10% of P.D. The maximum $496kgf/cm^2$ of 28days compressive strength was acheiveti when 10% of P.D. was added to the cement mortar.

Preparation and Properties of Geopolymer for Cultural Asset Restoration (문화재 복원용 무기계 수지의 합성 및 특성)

  • Hwang, Yeon;Hwang, Sun-Do;Kang, Dae-Sik;Park, Mi-Hye
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • The feasibility of the geopolymer as a cultural asset restoration material was studied by investigating compressive strength and chromaticity change. Metakaolin that was synthesized by calcination of the kaolin at $750^{\circ}C$ for 6 hours was used as a geopolymeric starting material. Kaolin lost its crystallinity and changed into non-crystalline phase during calcination. NaOH solution and water glass were used as an initiator for the geopolymeric reaction. As the concentration of NaOH solution and water glass increased the compressive strength increased. When alumina was substituted with metakaolin, the compressive strength decreased at a small amount of alumina, but increased at a large substitution. For the most composition of geopolymers, the change of chroma values remained within the limit of slight variation after exposure to sunlight for 8 and 100 days. However, even small amount of organic pigment addition increased chroma values of metakaoline. It was shown that geopolymer had excellent chroma value change over epoxy resins.

  • PDF

A Study on the Properties of Mortar with Recycled Fine Aggregate (순환잔골재를 사용한 모르타르의 제물성에 관한 실험적 연구)

  • Moon, Dae-Joong;Choi, Jae Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.96-100
    • /
    • 2009
  • The properties of recycled fine aggregates which had different source concrete were examined by mortar test. With higher strength of source concrete, specific gravity of recycled fine aggregate was higher and absorption of recycled fine aggregate was lower due to reduction of the volume of adhered cement paste. The compressive strength and flexible strength of mortar with recycled fine aggregate were affected by the interface boundary of new mortar and the strength of adhered mortar. Strength development of mortar with recycled fine aggregate reduced because recycled fine aggregate become a porous material with the smaller strength of source concrete. The drying shrinkage of mortar was about$800{\sim}2000{\mu}m/m$. It was about 1.5 times than that of mortar with natural fine aggregate. Relative dynamic modulus of elasticity was a similar level with that of mortar with natural fine aggregate.

  • PDF

Characterization of Shrinkage Reducing Type Cement Carbon Dioxide-reducible CSA Synthesis (이산화탄소 저감형 CSA합성을 통한 수축저감형 시멘트의 특성 평가)

  • Cho, Yong-Kwang;Nam, Seong-Young;Kim, Chun-Sik;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • Calcium sulfaluminate (CSA) was synthesized to improve the shrinkage of OPC. In this study, the setting time, the compressive strength and the length change ratio were confirmed by replacing the synthesized CSA with OPC by 10% and 13% by 16%. In the case of shrinkage-reducing type cement, formation of Ca-Al-$H_2$-based hydrate was activated. Therefore, the setting time was shortened. The compressive strength of the shrinkage - reducing type cement is comparable to that of OPC after 7 days' strength. However, shrinkage reducing type cement showed improved initial strength compared to OPC. The length change ratio was found to be improved by drying shrinkage from -0.075% to -0.047% on the 28th day.

The Effect of Curing Temperature History on Concrete Strength Development (양생온도 이력이 콘크리트 강도발현에 미치는 영향)

  • 고훈범;양은익;음성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.89-100
    • /
    • 1998
  • 본 연구는 양생온도이력이 콘크리트 강도에미치는 영향을 평가하기 위한 것으로 물 시멘트비가 60%, 45%, 26%인 3종류의 콘크리트에대하여 5$^{\circ}C$부터 5$0^{\circ}C$까지의 항온양생과 초기재령에 고온도이력을 변수로 한 변동온도양생을 실시한 공시체의 압축강도를 측정하였다. 또한 그 실험결과에 강도평가 방법의 하나인 Maturity 개념을 도입하여 강도평가에 미치는 재령, w/c, 온도이력 등에 대한 영향을 평가하였다. 항온양생 실험결과에 따르면 물시멘트비가 낮을수록 초기재령에서의 강도발현은 높게 나타나며 양생온도 5$0^{\circ}C$인 경우를 제외하고 재령7일까지의 강도발현은 양생온도가 높을수록 크게 나타나고 있다. 한편, 변동온도양생실험결과에 의하면 초기재령에서 고온양생한 콘크리트의 강도발현은 물시멘트비의 영향을 크게 받으며, 1주 이후의 양생온도가 강도발현에 미치는 영향은 1주까지의 고온도이력에 대한 영향에 비교해 2차적이다. 기존의 Maturity개념인 Saul-Bergstrom의 함수와 Ooi의 함수를 가지고 항온 및 변동온도 양생실험결과를 분석한 결과, 전체적으로 Saul-Bergstrom식에 의한 경우가 실험값과의 차이가 작게 나타났으나 두 식 모두 Maturity 가 큰 경우에는 계산에 의한 값이 실험에 의한 값보다 크게 나타나고 있어 장기 재령시 강도평가는 한계강도 개념을 고려한 새로운 Matruity함수를 제안할 필요가 있다.

A Study in order to Utilize Waste Glasses Powder as Admixtures of Self-Compacting Concrete (폐유리(廢琉璃) 미분용(微粉用)을 보수용(補修用) 모르타르 및 자기충전(自己充塡)콘크리트의 혼화재료(混和材料)로 활용(活用)하기 위한 연구(硏究))

  • Choi, Yun-Wang;Jung, Jea-Gwone;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.29-37
    • /
    • 2008
  • Recently, domestically and internationally, the occurrences of Waste Glass are on the increase. Most of scrap glass are either reused of recycled. However, glass not recycled is buriedand is causing secondary environmental problem. With 5% mixture of Waste Glass, the average paste viscosity (rheology) decreased by 22.3% and 28-day compressive strength of mortar's flow and aging decreased by 1.5% and 6% respectively. Also, as Waste Glass mixture ratio of un-hardened elf-compacting concrete increased, fluidity increased and compressive strength decreased. In consideration of adequate compressive strength and fluidity that meets the 2nd class JSCE regulations; optimum mixture ratio of Waste Glass can be concluded as 20%.