• Title/Summary/Keyword: -galactosidase

Search Result 669, Processing Time 0.031 seconds

Production, Purification and Characterization of $\beta$-Galactosidase from Streptococcus thermophilus 510 (Streptococcus thermophilus 510에 의한 $\beta$-Galactosidase의 생산, 정제 및 특성)

  • 강국희;박신인
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 1989
  • Streptococcus thermophilus 510 was investigated as n potential source of $\beta$-galactosidase. Optimum cultural conditions for maximum enzyme production were 0.5% loctose as carbon source, initial pH 7.0, 37 $^{\circ}C$, and 18 hours of cultivation. The enzyme was purified to homogeneity by ammonium sulfate fractionation, protamine sulfate precipitation, Sephadex G-200 gel filtration, and DEAE-Sephadex A-50 ion exchange chromntography. The purified enzyme exhibited an optimum pH at 1.0, and an optimum temperature of 5$0^{\circ}C$. Metal ions such as Mn$^{2+}$ and $K^+$, dithiothreitol, and 2-mercaptoethanol stimulated $\beta$-galactosidase activity. Ethylenediamine tetraacetic add, 8-hydroxyquinoline, Hg$^2+$, Zn$^{2+}$, Co$^{2+}$, $Ca^{2+}$, and galactose were inhibitory. The $K_m$ and V$_{max}$ for o-nitrophenyl $\beta$-D-galactopyranoside were 1.25mM and 88.50$\mu$moles/min.mg protein, respectively. The molecular weight was estimated to be 520,000, and the amino acid composition indicated relatively high contents of glutamic acid, aspartic acid, leucine, and valine.

  • PDF

β-Galactosidase Gene of Thermus thermophilus KNOUC112 Isolated from Hot Springs of a Volcanic Area in New Zealand: Identification of the Bacteria, Cloning and Expression of the Gene in Escherichia coli

  • Nam, E.S.;Choi, J.W.;Lim, J.H.;Hwang, S.K.;Jung, H.J.;Kang, S.K.;Cho, K.K.;Choi, Y.J.;Ahn, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1591-1598
    • /
    • 2004
  • To isolate the $\beta$-galactosidase producing thermophilic bacteria, samples of mud and water were collected from hot springs of avolcanic area near Golden Springs in New Zealand. Among eleven isolated strains, the strain of KNOUC112 produced the highest amounts of $\beta$-galactosidase at 40 h incubation time (0.013 unit). This strain was aerobic, asporogenic bacilli, immobile, gram negative, catalase positive, oxidase positive, and pigment producing. Optimum growth was at 70-72$^{\circ}C$, pH 7.0-7.2, and it could grow in the presence of 3% NaCl. The main fatty acids of cell components were iso-15:0 (30.26%), and iso-17:0 (31.31%). Based on morphological and biochemical properties and fatty acid composition, the strain could be identified as genus Thermus, and finally as Thermus thermophilus by phylogenetic analysis based on 16S rRNA sequence. So the strain is designated as Thermus thermophilus KNOUC112. A gene from Thermus thermophilus KNOUC112 encoding $\beta$-galactosidase was amplified by PCR using redundancy primers prepared based on the structure of $\beta$-galactosidase gene of Thermus sp. A4 and Thermus sp. strain T2, cloned and expressed in E. coli JM109 DE3. The gene of Thermus thermophilus KNOUC112 $\beta$-galactosidase(KNOUC112$\beta$-gal) consisted of a 1,938 bp open reading frame, encoding a protein of 73 kDa that was composed of 645 amino acids. KNOUC112$\beta$-gal was expressed as dimer and trimer in E. coli JM109 (DE3) via pET-5b.

Isolation and Characterization of Cold-adapted Strains Producing ${\beta}-Galactosidase$

  • Park Jeong-Won;Oh Yong-Sik;Lim Jai-Yun;Roh Dong-Hyun
    • Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.396-402
    • /
    • 2006
  • [ ${\beta}-Galactosidase$ ] is extensively employed in the manufacture of dairy products, including lactose-reduced milk. Here, we have isolated two gram-negative and rod-shaped coldadapted bacteria, BS 1 and HS 39. These strains were able to break down lactose at low temperatures. Although two isolates were found to grow well at $10^{\circ}C$, the BS 1 strain was unable to grow at $37^{\circ}C$. Another strain, HS-39, evidenced retarded growth at $37^{\circ}C$. The biochemical characteristics and the results of 16S rDNA sequencing identified the BS 1 isolate as Rahnella aquatilis, and showed that the HS 39 strain belonged to genus Buttiauxella. Whereas the R. aquatilis BS 1 strain generated maximal quantities of ${\beta}-galactosidase$ when incubated for 60h at $10^{\circ}C$, Buttiauxella sp. HS-39 generated ${\beta}-galactosidase$ earlier, and at slightly lower levels, than R. aquatilis BS 1. The optimum temperature for ${\beta}-galactosidase$ was $30^{\circ}C$ for R. aquatilis BS-1, and was $45^{\circ}C$ for Buttiauxella sp. HS-39, thereby indicating that R. aquatilis BS-1 was able to generate a cold-adaptive enzyme. These two cold-adapted strains, and most notably the ${\beta}-galactosidase$ from each isolate, might prove useful in some biotechnological applications.

Expression of $\beta$-Galactosidase Gene Microinjected into Xenopus Egg During Early Development (초기발생 동안 양서류 난에 미세주입된 $\beta$-galactosidase 유전자의 발현)

  • 차병직;정해문
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.365-372
    • /
    • 1990
  • For the effort to produce transgenic amphibians, a plasmid DNA sequence (cytoplasmic actin promoter-linked bacterial $\beta$-galactosidase gene) was microinjected into fertilized Xenopus eggs. It appeared that the injection of 20 nl solution containing 1-2 ng of DNA was not toxic, but over 4 ng was toxic to embryonic development. The translational product of $\beta$-gal gene ($\beta$-galactosidase) had enzyme activity in all three germ layers of the embryo. Expression of the injected $\beta$-gal genes was first detected at mid-gastrula stage, and the activity persisted up to stage 43 (feeding tadpole) with decreased level of retention. However, the level of the expression was various among the injected individuals as well as each experiment. That is, $\beta$-galactosidase activities did not appear in all cells, instead a localized distribution pattern. Although other possibilities could not be omitted, this mosaic distribution of gene expression seemed to arise from unequal partition of the injected DNA into each blastomere during early cleavage.

  • PDF

Production, Purification and Characterization of $\beta$-Galactosidase from Bifidobaacterium longurn KCTC 3 2 15 (Bifidobacterium longum KCTC 3215에 의한 $\beta$-Galactosidase의 생산. 정제 및 특성)

  • 강국희;민해기;장영효;이호근
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.456-463
    • /
    • 1991
  • $\beta$-Galactosidase of Bifidobacterium longum KCTC 3215 was studied on the production, purification, and characterization. Optimum conditions for the enzyme production were in the medium of 1.0% lactose as carbon source, initial pH 7.0 and in 17 hours of cultivation at $37^{\circ}C$. The enzyme was purified 9.25 folds by protamine sulfate precipitation, ammonium sulfate fractionation, DEAE-Sephadex A-50 ion exchange chromatography and Sephadex G-150 gel filtration. The maximal P-galactosidase activity was observed at pH 6.5 and at the temperature of $40^{\circ}C$ This enzyme was stable at pH 6.0-8.5. Metal ions such as $Ca^{2+} \;and \; Co^{2+}$, 2-mercaptoethanol, cysteine, and glutathione stimulated B-galactosidase activity. The enzyme activity was inhibited by addition of $Mg^{2+}, Fe^{2+}, Cs^{1+}, Li^{1+}$, DETA, galactose, and $\rho$-chloromercuribenzoic acid. The kinetics of o-nitrophenyl-$\beta$-D-galactopyranoside and lactose were $K_m$ = 1.66 mM, $V_{max}= 0.30 mM/min\cdot mg\cdot protein$ and $KK_m = 3.18 mM, \; V_{max}= 0.42 mM/min \cdot mg\cdot$ protein, respectively. The molecular weight of native enzyme was about 360, 000 dalton and the enzyme consisted of 2 identical subunits with a molecular weight of 180, 000.

  • PDF

Purification and Substrate Specificity of Debaryomyces sp. ${\alpha}$-Galactosidase by Mannobiose-Sepharose Affinity Column Chromatograpy (Mannobiose-Sepharose 담체합성 및 Affinity column chromatograpy에 의한 Debaryomyces sp. 유래 ${\alpha}$-Galactosidase의 정제 및 기질 특이성)

  • Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.180-185
    • /
    • 2006
  • ${\alpha}$-Galactosidase was partially purified from the culture filtrate of Debaryomyces sp. by Mannobiose-Sepharose affinity column chromatography. The galactosidase exhibited maximum activity at pH 4.0 and $60^{\circ}C$, and was stable in the pH and temperature ranges of 3 to 4.5 and 30 to $50^{\circ}C$, respectively. The enzyme was inhibited by $Hg^{2+}\;and\;Ag^{2+}$. The enzyme activity was not affected considerably by treatment with other metal compounds. The enzyme hydrolyzed melibiose to galactose and glucose, raffinose to galactose and sucrose, and $Gal^3Man_3$ ($6^3-{\alpha}$-galactosyl-1,4-mannotriose) to galactose and mannotriose. On the contrary, it could not hydrolyze $Gal^3Man_4$ ($6^3-{\alpha}$-galactosyl-1,4-mannotetraose).

A Study on the Galactooligosaccharides Produced from Transgalactosylation with ${\beta}-Galactosidase$ of Aspergillus and Kluyveromyces (A. oryzae와 K. fragilis 유래의 ${\beta}-Galactosidase$ 혼합처리에 의한 전이 Galactooligo당의 생성에 관한 연구)

  • Moon, Ji-Woong;Huh, Kyeong-Tak;Lee, Su-Won;Lee, Jai-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.271-280
    • /
    • 1995
  • These studies examined the production of oligosaccharides by ${\beta}-galactosidase$originated from Aspergillus oryzae and Kluyveromyces fragilis mixed. In addition, heat resistance and acid stability of transgalactosylated oligosaccharides were measured. When ${\beta}-galactosidase$ from A. oryzae, K. fragilis and mixed ${\beta}-galactosidase$ were added to 30%(w/v) lactose solution, maximum production of transgalactosylated oligosaccharides were 26.9%, 37.05 and 27.2%, respectively. The ratios of disacchride, trisacchride and tetrasaccharide in transgalactosylated oligosaccharides were 20.5 : 5.4 : 0.6, 20.4 : 10.5 : 4.2 and 21.0 : 4.1 : 1.9, respectively. Nine different oligosaccharides were recovered with 30% and 40% ethanol fractions. When the 30% ethanol fraction was treated at $150^{\circ}C$ for 10 min more than 90% of oligosaccharides remained stable. More than 90% of the oligosaccharides were stable at $130^{\circ}C$ for 3 min with pH 3.0, whereas there of Kluyveromyces was more than 90% with pH 3.5.

  • PDF

Immobilization of $\beta$-Galactosidase from E. coli K-12 CHS36 Using Tannin - Activated Cellulose Beads ($\beta$-Galactosidase의 Tannin 활성화 섬유소 입자에의 고정화)

  • Hong, Y.S.;Kwon, S.T.;Chun, M.J.;Sernetz, M.
    • Applied Biological Chemistry
    • /
    • v.26 no.4
    • /
    • pp.217-221
    • /
    • 1983
  • $\beta$-Galactosidase($\beta$-D-galactoside galactohydrolase, E.C. 3. 2. 1. 23) from E. coli K-12 CSH 36 was immobilized on porous cellulose beads which were previously activated with tannin and p-benzoquinone. Their general properties and applicational possibities were investigated. The most effective, enzyme immobilization was obtained when tannin and p-benzoquinone, pH 11.0, were used together as activation reagents and a period of 6 hours of activation. The optimum pH of $\beta$-galactosidase was 5.5 for free enzyme and 6. 0 for the immobilized enzyme, the optimum temperatures for native and immobilized enzyme were both $50^{\circ}C$. Kms of native $\beta$-galactosidase and immobilized enzyme for ONPG(o-nitrophenyl galactopyranoside) were about $4.0{\times}10^(-4)M$ and $7.5{\times}10^(-4)M$, respectively. In the case of tannin : p-benzoquinone activated cellulose beads, the immobilized enzyme retained over 80% of the initial enzyme activity after 20 runs, which is very promising result far a possible industrial application.

  • PDF

Hydrolysis Activity of ${\alpha}-Galactosidase$ from Bacillus licheniformis (Bacillus licheniformis로부터 생산된 ${\alpha}-Galactosidase$의 가수분해 활성)

  • Kim Hyun Suk;Lee Kyung-Seob;So Jae Ho;Yoon Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • The maximum productivity of ${\alpha}-galactosidase,$ capable of hydrolyzing completely ${\alpha}-D-l,6-galactopyranosyl$ linkages within oligomeric substrates such as melibiose, raffinose and stachyose to liberate galactose residue, was reached to 718 mU/ml in the culture filtrate of Bacillus licheniformis at death phase. The ${\alpha}-galactosidase$ was identified to show different efficiencies for hydrolyzing the ${\alpha}-galactooligosaccharides$ according to analysis of reaction products by both TLC and quantification of the liberated reducing sugars. The enzyme was active on ${\alpha}-galactooligosaccharides$ in the order of melibiose, raffinose, and stachyose. Though the hydrolyzing activity of enzyme was faintly inhibited by reaction products such as galactose, glucose and sucrose with amounts of five folds more than the added substrates (20 mM), the largest inhibition of enzyme activity was caused by galactose among the end products. Unknown compound, which migrated slower than melibiose on TLC, was detected during hydrolysis reaction of melibiose, suggesting that the ${\alpha}-galactosidase$ has a glycosyl transferase activity. In addition, the enzyme was able to hydrolyze efficiently raffinose and stachyose existed in the soluble extract of soybean meal.

Coproduction of Thermostable Amylase and ${\beta}$-Galactosidase Enzymes by Geobacillus stearothermophilus SAB-40: Application of Plackett-Burman Design to Evaluate Culture Requirements Affecting Enzyme Production

  • Soliman, Nadia A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.695-703
    • /
    • 2008
  • A locally isolated thermophile, Geobacillus sp. SAB-40, producing thermostable extracellular amylase constitutively and an induced intracellular ${\beta}$-galactosidase was characterized and identified based on 16S rRNA sequencing. A phylogenetic analysis then revealed its closeness to Geobacillus stearothermophilus. To evaluate the effect of the culture conditions on the coproduction of both enzymes by G stearothermophilus SAB-40, a Plackett-Burman fractional factorial design was applied to determine the impact of twenty variables. Among the tested variables, $CaCI_2$, the incubation time, $MgSO_4{\cdot}7H_2O$, and tryptone were found to be the most significant for encouraging amylase production. Lactose was found to promote ${\beta}$-galactosidase production, whereas starch had a significantly negative effect on lactase production. Based on a statistical analysis, a preoptimized medium attained the maximum production of amylase and ${\beta}$-galactosidase at 23.29 U/ml/ min and 12,958 U/mg biomass, respectively, which was 3-and 2-fold higher than the yield of amylase and lactase obtained with the basal medium, respectively.