Coproduction of Thermostable Amylase and ${\beta}$-Galactosidase Enzymes by Geobacillus stearothermophilus SAB-40: Application of Plackett-Burman Design to Evaluate Culture Requirements Affecting Enzyme Production

  • Soliman, Nadia A. (Mubarak City for Scientific Research and Technology Applications, Genetic Engineering and Biotechnology Research Institute, Bioprocess Development Department, New Burg El-Arab City, Universities and Research Institutes Zone)
  • Published : 2008.04.30

Abstract

A locally isolated thermophile, Geobacillus sp. SAB-40, producing thermostable extracellular amylase constitutively and an induced intracellular ${\beta}$-galactosidase was characterized and identified based on 16S rRNA sequencing. A phylogenetic analysis then revealed its closeness to Geobacillus stearothermophilus. To evaluate the effect of the culture conditions on the coproduction of both enzymes by G stearothermophilus SAB-40, a Plackett-Burman fractional factorial design was applied to determine the impact of twenty variables. Among the tested variables, $CaCI_2$, the incubation time, $MgSO_4{\cdot}7H_2O$, and tryptone were found to be the most significant for encouraging amylase production. Lactose was found to promote ${\beta}$-galactosidase production, whereas starch had a significantly negative effect on lactase production. Based on a statistical analysis, a preoptimized medium attained the maximum production of amylase and ${\beta}$-galactosidase at 23.29 U/ml/ min and 12,958 U/mg biomass, respectively, which was 3-and 2-fold higher than the yield of amylase and lactase obtained with the basal medium, respectively.

Keywords

References

  1. Batra, N. and J. Singh. 2002. Production and characterization of a thermostable $\beta$-galactosidase from Bacillus coagulans RCS3. Biotechnol. Appl. Biochem. 36: 1-6 https://doi.org/10.1042/BA20010091
  2. Ben Ali, M., S. Mhiri, M. Mezghani, and S. Bejar. 2001. Purification and sequence analysis of a typical maltohexaoseforming $\alpha$-amylase of B. stearothermophilus US100. Enzyme Microb. Technol. 28: 537-542 https://doi.org/10.1016/S0141-0229(01)00294-0
  3. Bereaka, M. M., N. A. Soliman, and Y. R. Abdel-Fattah. Production, partial characterization and cloning of thermostable $\alpha$-amylase of a thermophile Geobacillus thermoleovorans YN. Biotechnology 42: 1090-1100
  4. Bessler, C., J. Schmitt, K.-H. Maurer, and R. Schmid. 2003. Directed evolution of a bacterial $\alpha$-amylase: Toward enhanced pH-performance and higher specific activity. Protein Sci. 12: 2141-2149 https://doi.org/10.1110/ps.0384403
  5. Brady, D. and R. E. Marchant. 1995. Isolation and partial characterization of $\beta$-galactosidase activity produced by a thermostable strain of Kluyveromyces maximas during growth on lactose containing media. Enzyme Microb. Technol. 17: 696-699 https://doi.org/10.1016/0141-0229(94)00115-8
  6. Chang, Y.-N., J.-C. Huang, C.-C. Lee, I.-L. Shih, and Y.-M. Tzeng. 2002. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus rubber. Enzyme Microb. Technol. 30: 889-894 https://doi.org/10.1016/S0141-0229(02)00037-6
  7. Chang, B. S. and R. Mahoney. 1994. Thermal denaturation of $\beta$-galactosidase from Streptococcus thermophilus and its stabilization by bovine serum albumin. An electrolytic study. Biotechnol. Biochem. 19: 169-178
  8. Chen, Q. H., G. Q. He, and M. A. M. Ali. 2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb. Technol. 30: 667-672 https://doi.org/10.1016/S0141-0229(02)00028-5
  9. Dong, G., C. Vielle, A. Savchenko, and J. G. Zeikus. 1997. Cloning, sequencing, and expression of the gene encoding extracellular $\alpha$-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63: 3569-3576
  10. Dong, G., C. Vielle, and J. G. Zeikus. 1997. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63: 3577-3584
  11. Dumortier, V., C. Brassart, and S. Bouquelet. 1994. Purification and properties of a $\beta$-D-galactosidase from Bifidobacterium bifidum exhibiting transgalactosylation reaction. Biotechnol. Appl. Biochem. 19: 341-354
  12. El-Helow, E. R., Y. R. Abdel-Fattah, K. M. Ghanem, and E. A. Mohamad. 2000. Application of the response surface methodology for optimizing the activity of an aprE-driven gene expression system in Bacillus subtilis. Appl. Microbiol. Biotechnol. 54: 515-520 https://doi.org/10.1007/s002530000411
  13. Fischer, L. and C. Scheckermann. 1995. Purification and characterization of a thermotolerant $\beta$-galactosidase from Thermomyces lanuginosus. Appl. Environ. Microbiol. 61: 1497-1501
  14. Fogarty, W. M. and C. T. Kelly. 1990. In W. M. Fogarty and C. T. Kelly (eds.), Microbial Enzyme and Biotechnology, pp. 7- 132, 2th Ed. Elsevier Science, London
  15. Francis, F., A. Sabu, K. Madhavan Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, and A. Pandey. 2003. Use of response surface methodology for optimizing process parameters for the production of $\alpha$-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107-115 https://doi.org/10.1016/S1369-703X(02)00192-4
  16. Fukusumi, S. A., A. Kamizono, S. Horinouchi, and T. Beppu. 1988. Cloning and nucleotide sequence of a heat stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum. Eur. J. Biochem. 174: 25-21
  17. Furlan, S. and A. Schneider. 2000. Formulation of a lactose-free low cost medium for the production of $\beta$-galactosidase by Kluyveromyces marxiamus. Biotechnol. Lett. 22: 589-593 https://doi.org/10.1023/A:1005629127532
  18. Fuwa, H. 1954. A new method for microdetermination of amylase activity by the use of amylose as the substrate. J. Biochem. (Tokyo) 41: 583-603 https://doi.org/10.1093/oxfordjournals.jbchem.a126476
  19. Ghanem, N. B., H. H. Yusef, and H. K. Mahrouse. 2000. Production of Aspergillus terreus xylanase in solid-state cultures: Application of the Plackett-Burman experimental design to evaluate nutritional requirements. Bioresour. Technol. 73: 113- 121 https://doi.org/10.1016/S0960-8524(99)00155-8
  20. Gowland, P., M. Kernick, and T. K. Sundaram. 1987. Thermophilic bacterial isolates producing lipase. FEMS Microbiol. Lett. 48: 339-343 https://doi.org/10.1111/j.1574-6968.1987.tb02621.x
  21. Grueniger, B. and B. Sonnleitner. 1984. Bacterial diversity in thermophilic aerobic sewage sludge. Appl. Microbiol. Biotechnol. 19: 414-421 https://doi.org/10.1007/BF00454380
  22. Huber, R. E., G. Kurz, and K. Wallenfels. 1976. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of $\beta$-galactosidase (E. coli) on lactose. Biochemistry 15: 1994-2001 https://doi.org/10.1021/bi00654a029
  23. Jin, F., Y. Li, C. Zhang, and H. Yu. 2001. Thermostable $\alpha$- amylase and $\alpha$-galactosidase production from the thermophilic and aerobic Bacillus sp. JF strain. Process Biochem. 36: 559- 564 https://doi.org/10.1016/S0032-9592(00)00247-8
  24. Kochhar, S. and R. D. Dua. 1990. Thermostable liquefying $\alpha$- amylase from Bacillus amyloliquefaciens. Biotechnol. Lett. 12: 393-396 https://doi.org/10.1007/BF01024438
  25. Konsoula, Z. and M. Liakopoulou-Kyriakides. 2004. Hydrolysis of starches by the action of $\alpha$-amylase from Bacillus subtilis. Process Biochem. 39: 1745-1749 https://doi.org/10.1016/j.procbio.2003.07.003
  26. Konsoula, Z. and M. Liakopoulou-Kyriakides. 2007. Coproduction of $\alpha$-amylase and $\beta$-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour. Technol. 98: 150-157 https://doi.org/10.1016/j.biortech.2005.11.001
  27. Liebl, W., B. Wagner, and J. Schellhase. 1998. Properties of a $\alpha$-galactosidase, and structure of its gene galA, within $\alpha$- and $\beta$- galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritina. Syst. Appl. Microbiol. 21: 1- 11 https://doi.org/10.1016/S0723-2020(98)80002-7
  28. Li, X., L. Yang, F. Zuo, and F. Jin. 1997. Factors regulating production of $\alpha$-galactosidase from Bacillus sp. JF. Lett. Appl. Microbiol. 24: 1-5 https://doi.org/10.1111/j.1574-6941.1997.tb00418.x
  29. Lim, J. K., H. S. Lee, Y. J. Kim, S. S. Bae, J. H. Jeon, S. G. Kang, and J.-H. Lee. 2007. Critical factors to high thermostability of an $\alpha$-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J. Microbiol. Biotechnol. 17: 1242-1248
  30. Lind, D. L. and D. A. Daniel. 1989. $\beta$-Galactosidase from a strain of the anaerobic Thermoanaerobacter. Enzyme Microb. Technol. 11: 180-186 https://doi.org/10.1016/0141-0229(89)90079-3
  31. Lonsane, B. K. and M. V. Ramech. 1990. In S. A. Neidleman (ed.). Advances in Applied Microbiology, Vol. 35, pp. 1-56. Academic Press, New York
  32. Malhotra, R., S. M. Noorwez, and T. Satyanarayana. 2000. Production and partial characterization of thermostable and calcium independent $\alpha$-amylase of an extreme thermophile Bacillus thermoleovorans NP54. Lett. Appl. Microbiol. 31: 378-384 https://doi.org/10.1046/j.1472-765x.2000.00830.x
  33. Mamo, G., B. A. Gashe, and A. Gessesse. 1999. A highly thermostable amylase from a newly isolated thermophilic Bacillus sp. WN11. J. Appl. Microbiol. 86: 557-560 https://doi.org/10.1046/j.1365-2672.1999.00685.x
  34. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  35. Nakao, M., M. Harada, Y. Kodama, T. Nakayama, Y. Shibano, and T. Amachi. 1994. Purification and characterization of a thermostable $\beta$-galactosidase with high transgalactosylation activity from Saccharopolyspora rectivirgula. Appl. Microbiol. Biotechnol. 40: 657-663 https://doi.org/10.1007/BF00173325
  36. Onishi, N., A. Yamashiro, and K. Yokozeki. 1995. Production of galactooligosaccharide from lactose by Sterigmatomyces eiviae CBS8119. Appl. Environ. Microbiol. 61: 4022-4025
  37. Page, R. D. M. 1986. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358
  38. Pandey, A. 1992. Recent developments in process solid-state fermentation. Process Biochem. 27: 109-117 https://doi.org/10.1016/0032-9592(92)80017-W
  39. Pandey, A. and P. Nigam. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152 https://doi.org/10.1042/BA19990073
  40. Pandey, A., P. Nigam, C. R. Soccol, C. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152 https://doi.org/10.1042/BA19990073
  41. Patel, G. B. and C. R. Mackenzie. 1985. Properties and potential advantages of $\beta$-galactosidase from Bacteriodes polyprogmatus. Appl. Microbiol. Biotechnol. 22: 114-120
  42. Pedersen, H. and J. Nielsen. 2000. The influence of nitrogen sources on $\alpha$-amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotechnol. 53: 278-281 https://doi.org/10.1007/s002530050021
  43. Plackett, R. L. and J. P. Burman. 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325 https://doi.org/10.1093/biomet/33.4.305
  44. Roychudhury, S., S. J. Parulekar, and W. A. Weigand. 1988. Cell growth and $\alpha$-amylase production characteristics of Bacillus amyloliquefaciens. Biotechnol. Bioeng. 33: 197-206 https://doi.org/10.1002/bit.260330209
  45. Shaw, A., R. Bott, and A. G. Day. 1999. Protein engineering of $\alpha$-amylase for low pH performance. Curr. Opin. Biotechnol. 10: 349-352 https://doi.org/10.1016/S0958-1669(99)80063-9
  46. Shaw, J.-F., F.-P. Lin, S.-C. Chen, and H.-C. Chen. 1995. Purification and properties of an extracellular $\alpha$-amylase from Thermus sp. Bot. Bull. Acad. Sin. 36: 195-200
  47. Srivastava, R. A. K. and J. N. Baruah. 1986. Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Appl. Environ. Microbiol. 52: 179-184
  48. Steppan, D., J. Werner, and B. Yeater. 1999. Essential regression and experimental design in MS Excel-free, user friendly software package for doing multiple linear regression, step-wise regression, polynomial regression, model adequacy checking and experimental design in MS Excel. Available at: http://www.geocities.com/Silicon Valley/Network/1032/
  49. Stow, R. A. and R. P. Mayer. 1966. Efficient screening of process variables. Ind. Eng. Chem. 58: 36-40
  50. Strobel, R. J. and G. R. Sullivan. 1999. Experimental design for improvement of fermentations, pp. 80-93. In A. L. Demain and J. E. Davies (eds.), Manual of Industrial Microbiology and Biotechnology. ASM Press, Washington
  51. Suzuki, H., Y. Ozawa, H. Oota, and H. Yoshida. 1969. Studied on the decomposition of raffinose by $\alpha$-galactosidase of mold, Part I. $\alpha$-Galactosidase formation and hydrolysis of raffinose by the enzyme preparation. Agric. Biol. Chem. 33: 506-513 https://doi.org/10.1271/bbb1961.33.506
  52. Tonkova, A., R. Manolov, and E. Dobreva. 1993. Thermostable $\alpha$-amylase from derepressed Bacillus licheniformis produced in high yields from glucose. Process Biochem. 28: 539-542 https://doi.org/10.1016/0032-9592(93)85015-8
  53. Tsurikova, N. V., L. I. Nefedova, E. V. Kostyleva, V. I. Zvenigorodskii, V. G. Yasinovskii, T. A. Voeikova, and A. P. Sinitsyn. 2002. Selection of a potent Bacillus licheniformis strain producing thermostable amylase. Appl. Biochem. Microbiol. 38: 427-432 https://doi.org/10.1023/A:1019960216770
  54. Vasiljevic, T. and P. Jelen. 2001. Production of $\beta$-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innovative Food Sci. Emerg. Technol. 2: 75-85 https://doi.org/10.1016/S1466-8564(01)00027-3
  55. Yoon, J. I. T. and K. Ajisaka. 1996. The synthesis of galactopyranosyl derivatives with $\beta$-galactosidases of different origins. Carbohydr. Res. 292: 153-163 https://doi.org/10.1016/S0008-6215(96)91041-1