In MANET consisting of only mobile nodes, all nodes serve as routes. However, the dynamic topology due to frequent movement of nodes degrades routing performance and is also cause of many security vulnerabilities. Therefore, security must be applied to routing techniques that can influence the performance of MANET. In this paper, we propose a technique for efficiently responding to various routing attacks and safe data transmission through application of zone-key based security routing techniques. A zone-based network structure was used, and a management node that manages member nodes in each zone was used in the proposed technique. In addition, the damage from the attacking node was minimized by issuing a key to each node and applying this to a routing technique. The zone management node issues a key for encryption routing information and manages the issuance information. A member node that wants to transmit data encrypts routing in formation using a key issued from the zone management node, and then performs path discovery using this. The improved performance of the proposed technique was confirmed through a comparative experiment with the CBSR and ARNA technique, excellent performance was confirmed through experiments.
Since 99% of PCs operating in the defense domain use the Windows operating system, detection and response of Window-based malware is very important to keep the defense cyberspace safe. This paper proposes a model capable of detecting malware in a Windows PE (Portable Executable) format. The detection model was designed with an emphasis on rapid update of the training model to efficiently cope with rapidly increasing malware rather than the detection accuracy. Therefore, in order to improve the training speed, the detection model was designed based on a Bidirectional LSTM (Long Short Term Memory) network that can detect malware with minimal sequence data without complicated pre-processing. The experiment was conducted using the EMBER2018 dataset, As a result of training the model with feature sets consisting of three type of sequence data(Byte-Entropy Histogram, Byte Histogram, and String Distribution), accuracy of 90.79% was achieved. Meanwhile, it was confirmed that the training time was shortened to 1/4 compared to the existing detection model, enabling rapid update of the detection model to respond to new types of malware on the surge.
Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.
The P-3C maritime patrol aircraft operated by the Republic of Korea Navy is equipped with various sensor devices (LRUs, line replace units) for tactical data collection. Depending on the characteristics of the sensor device, it operates with various communication protocols such as IEEE 802.3, MIL-STD-1553A/B, and ARINC-429. In addition, the collected tactical data is processed in the tactical station for mission operators, and this tactical station constitutes a clustering network on Gigabit Ethernet and operates in a distributed processing method. For communication with the sensor device, a specific tactical station mounts a peripheral device (eg. ARINC-429 interface card). The problem is that the performance of the entire distributed processing according to the peripheral device control and communication relay of this specific device is degraded, and even the operation stop of the tactical station has a problem of disconnecting the communication with the related sensor device. In this paper, we propose a method to mount a separate gateway to solve this problem, and the validity of the proposed application is demonstrated through the operation result of this gateway.
When digital libraries are developed by the traditional client/sever system using a single agent on the distributed environment, several problems occur. First, as the search method is one dimensional, the search results have little relationship to each other. Second, the results do not reflect the user's preference. Third, whenever a client connects to the server, users have to receive the certification. Therefore, the retrieval of documents is less efficient causing dissatisfaction with the system. I propose a new platform of mobile multiagents for a personal digital library to overcome these problems. To develop this new platform I combine the existing DECAF multiagents platform with the Voyager mobile ORB and propose a new negotiation algorithm and scheduling algorithm. Although there has been some research for a personal digital library, I believe there have been few studies on their integration and systemization. For searches of related information, the proposed platform could increase the relationship of search results by subdividing the related documents, which are classified by a supervised neural network. For the user's preference, as some modular clients are applied to a neural network, the search results are optimized. By combining a mobile and multiagents platform a new mobile, multiagents platform is developed in order to decrease a network burden. Furthermore, a new negotiation algorithm and a scheduling algorithm are activated for the effectiveness of PDS. The results of the simulation demonstrate that as the number of servers and agents are increased, the search time for PDS decreases while the degree of the user's satisfaction is four times greater than with the C/S model.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.145-147
/
2004
본 논문에서는 무선인터넷 환경에 적합한 개인화된 상품추천에이전트를 제안한다. 기존에 유선인터넷상의 많은 개인화 추천시스템에서는 초기 사용자 모델링을 위해 사용자에게 수많은 질의를 하고 응답을 요구하였다. 그러나 이러한 방식은 무선인터넷 환경에서 정보 전송량에 따른 높은 사용요금을 고려할 때 적용하기 힘든 방식이다. 본 제안 시스템은 사용자의 Social data률 이용하여 사용자를 비슷한 연령과 성별 그룹으로 나누고, 해당 그룹에서 구매율이 높은 상품을 우선 제시한 후, 사용자 행동을 모니터링 하여 암시적(Implicit)피드백을 통해 프로파일을 생성함으로써, 번거로운 질의-응답 과정 없이도 초기 사용자 모델링을 수행할 수 있다. 프로파일 생성 이후에는 이를 기반으로 하여 사용자몰 유사한 취향을 가진 그룹으로 다시 군집화한 후 협력적 추천을 하게 되며, 프로파일에는 해당 상품의 최종 카테고리명과 키워드를 수집함으로써, 상품의 브랜드와 규격정보를 반영한 추천이 가능하다. 또한 추천 상품과 사용자의 구매데이터와의 비교를 수행하여 사용자가 해당상품을 구매하였을 경우, 상품에 대한 취향정보는 그대로 유지하고 관련 상품을 추천하되, 구매한 상품이 중복 추천되지 않도록 하였다. 시스템 평가를 위해 프로토타입을 구현하여, 다수의 사용자에게 시스템을 이용하며 관심품목을 체크하도록 하였고. 추천횟수가 반복되며 히트율이 증가하는 결과를 통해 시스템의 학습속도와 성능을 평가하였다. 그리고 쇼핌몰에서 구매경험이 있는 사용자의 기존 구매데이터와 Social data를 이용한 초기 제시상품을 역으로 비교하여 오랜 시간과 비용 발생 없이도 초기 프로파일 생성의 유효성을 증명하였다. 포함하는 XML 질의에 대해서도 웹에서 캐쉬를 이용한 처리가 효율적임을 확인하였다.키는데 목적이 있다.RED에 비해 향상된 성능을 보여주었다.웍스 네트워크상의 다양한 디바이스들간의 네트워크 다양화와 분산화 기능을 얻을 수 있었고, 기존의 고가의 해외 솔루션인 Echelon사의 LonMaker 소프트웨어를 사용하지 않고도 국내의 순수 솔루션인 리눅스 기반의 LonWare 3.0 다중 바인딩 기능을 통해 저 비용으로 홈 네트워크 구성 관리 서버 시스템 개발에 대한 비용을 줄일 수 있다. 기대된다.e 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.58-60
/
2004
웹의 확산과 더불어 웹 페이지 검색의 성능 즉, 빠른 응답시간과 확장성(scalability)은 각 웹 사이트의 절대적 평가 기준이 되었다. 웹 옹용은 일반적으로 불특정 다수를 대상으로 하기 때문에 확장성 또한 주요 성능의 척도가 된다. 이와 같은 웹 사이트 성능을 담보하기 위한 대표적 요소기술이 웹 캐슁이다. 본 논문은 웹 상에서 XML 데이터베이스 기반의 웹 응용(XML database-backed web application)을 위한 응용서버의 XML 캐쉬를 이용하여 주어진 XML 질의를 변환, 처리하는 기법과 구현에 관한 것으로 XPath의 경로표현식 중 가장 중요한 세 가지 기능인 조건을 명시하는 필터 연산자, 부모-자식 관계를 나타내는 경로 연산자(/), 그리고 조상-후손 관계를 나타내는 경로 연산자(//)를 연구 범위로 하였다. [2]에서는 조상-후손 관계를 나타내는 경로 연산자(//)가 없는 경우에 경로표현식으로 주어진 XML 질의를 캐쉬를 이용하여 변환, 처리하는 알고리즘을 제시하였는데 본 논문에서는 [2]의 알고리즘을 확장하여 경로 연간자(//)가 지원되도록 하였다. 조상-후손 경로 연산자(//)로는 정규경로 표현식(regular path expression)을 나타낼 수 있는데 이는 스키마가 불확실한 반구조적 데이터인 XML 데이터에 대한 질의 표현에 유용하다. 제시된 알고리즘에서는 DTD를 이용하여 경로 정보를 얻어 처리함으로써 주어진 질의를 캐쉬와 하부 XML 소스에 대한 질의로 변환하였다. 이 알고리즘을 바탕으로 관계 DBMS를 이용하여 구현된 시스템으로 실제 웹 상에서 성능 실험을 수행하였다. 성능 실험 결과 정규 경로 표현식을 포함하는 XML 질의에 대해서도 웹에서 캐쉬를 이용한 처리가 효율적임을 확인하였다.키는데 목적이 있다.RED에 비해 향상된 성능을 보여주었다.웍스 네트워크상의 다양한 디바이스들간의 네트워크 다양화와 분산화 기능을 얻을 수 있었고, 기존의 고가의 해외 솔루션인 Echelon사의 LonMaker 소프트웨어를 사용하지 않고도 국내의 순수 솔루션인 리눅스 기반의 LonWare 3.0 다중 바인딩 기능을 통해 저 비용으로 홈 네트워크 구성 관리 서버 시스템 개발에 대한 비용을 줄일 수 있다. 기대된다.e 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아이에서 그 주산기사망률(周産基死亡率)이 각각 가장 낮았다. 2. 사산(死産)과 초생아사망(初生兒死亡)을 구분(區分)하여 고려해 볼때 사산(死産)은 모성(母性)의 임신력(
This paper presents an interactive progressive image transmission method, which enables a remote user to interactively select and transmit preferred regions from an index image. Our enhanced quadtree decomposition using PSNR-based rules and new implicit quadtree coding provide better rate-distortion performance than previous quadtree coders as well as leading bit plane methods. An adaptive traversal of child nodes is introduced for better visual display of restored images. Depth-first traversal combined with breadth-first traversal of the quadtree to accomplish interactive transmission as presented, results in a method that provides competitive performance at a low level of computational complexity. Moreover, our decoding requires only simple arithmetic which is enabling our method to be used for real-time mobile applications.
Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
/
2001.04a
/
pp.168-168
/
2001
제지공정의 지절 현상은 많은 공정 변수들이 복합적으로 작용하여 발생하는 가장 큰 공정 트러블 중의 하나이다. 지절은 생산량 감소 뿐만 아니라 발생 후 공정의 복구 와 정리, 생산재가동 및 공정의 재안정화를 위해 많은 시간과 비용, 그리고 노력이 투 입되어야 하므로 공정의 효율과 생산성을 크게 저하시키는 요인이다. 그러나 지절 현상 의 복잡성 때문에 이에 대해 쉽게 접근하거나 해결하지 못하고 있는 것이 현실이지만 그 필요성은 더욱 더 증대되고 있다. 본 연구에서는 최근 들어 각종 산업분야에서 복잡 한 공정상의 결점 발견 및 진단에 효과적이라고 인정받고 있는 예측 분석기법인 인공 신경망(artificial neural network) 시율레이션과 일반적인 통계기법 중의 하나인 주성분 분석을 이용하여 제지 공정의 지절 현상의 검토 가능성을 타진하였다. 인공신경망이란 인간두뇌에서 일어나는 자극-반응-학습과정을 모사하여 현실세계에 존재하는 다양한 현상들의 업력벡터와 출력상태 간의 비선형 mapping올 컴퓨터 시율 레이션을 통하여 분석하고자 하는 기법으로, 여러 가지 현상들을 학습을 통해서 인식하 는 신경망 내의 신경단위들이 병렬처리에 의해 많은 양의 자료에 대한 추론이나 판단 을 신속하고 정확하게 해주는 특징이 있으며 실시간 패턴인식이나 분류 응용분야에도 매우 매력적으로 이용되고 있는 방법이다. 이러한 인공 신경망 기법 중에서도 본 연구 에서는 퍼셉트론의 한계점을 극복하기 위하여 입력총과 출력층에 한 개 이상의 은닉층 ( (hidden layer)을 사용하여 다층 네트워으로 구성하고, 모든 입력패턴에 대하여 발생하 는 오차함수를 최소화하는 방향으로 연결강도를 조정하는 back propagation 학습 알고 리즘을 사용하였다. 지절의 원인으로 추정 가능한 공정인자들을 변수로 하여 최적의 인 공신경망을 구축하기 위해 학습률과 모멘트 상수의 변화 및 은닉층의 수와 출력층의 뉴런 수를 조절하는 동의 작업을 거쳐 네트워크의 정확도가 높은 인공신경망을 설계하 였다. 또한 이러한 인공신경망과의 비교분석을 위해 동일한 공정 데이터들올 이용하여 보편적으로 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.
Proceedings of the Korean Society for Agricultural Machinery Conference
/
2017.04a
/
pp.162-162
/
2017
구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.