• Title/Summary/Keyword: 회전 보행

Search Result 106, Processing Time 0.054 seconds

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

The Effect of Gait to Apply Aquatic Exercise on Achilles Tendon injured in Rats (수중운동이 아킬레스건 손상 흰쥐의 보행에 미치는 영향)

  • Yung, Joon-Hwan;Rho, Min-Hee;Kim, Eun-Young
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.184-192
    • /
    • 2003
  • This study were investigated the effects to the starting-time of the applied aquatic exercise to the functional healing phase on the Achilles tendon injured rats. The Spraque-Dawley female rats weights($246{\pm}18g$) were assigned to the four groups(24 rats), all experimental groups were able to walling training for 20 min. on the rolling bar motor before injured, one group; control group and three groups; aquatic exercise groups, The aquatic groups were derived into the first day, fourth day and seventh day groups after injuring Achilles tendon according to the levels of aquatic exercise. This studied were investigated the effects of functional healing after appling the aquatic exercising after first day, fourth day and seven days after injured Achilles tendon by the method of rolling bar-motor(Jc-35L-H/GEAR MOTOR, DC, 12V-20RPM, TAIWAN)R.O.C. and to the phase of healing phase to the Achilles tendon. After injuring Achilles tendon, the starting-times of walling on the rolling bar motor were showed from 10th day in the first day aquatic groups, after injuring, from the eight day of fourth day and seventh day aquatic groups, but those, of the all aquatic groups were not significantly showed from the ninth day after injured in the control group. There were showed healing phase without adherence like normal tissue from the fourth day group after injured to the control group. The results stewed that aquatic exercising were effected the healing phase to the injured Achilles tendon to apply exercise, after being the late period of inflammation.

  • PDF

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

A Study on Validation of Omnidirectional VR Treadmill by Comparison of Spatial Orientation Skills (공간지향 능력 비교를 통한 전방향 VR 트레드밀의 유효성 검증 연구)

  • Park, Hyunchul;Oh, Taeho;Kim, Inhi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.15-27
    • /
    • 2022
  • An omnidirectional VR treadmill is a highly-immersive walking simulator that allows identical body movements, such as walking, running, and sitting. However, the operation difficulty of an omnidirectional VR treadmill may cause data reliability problems. Therefore, this study aims to verify the effectiveness of a VR treadmill by comparing the ability to orient in the real and virtual worlds spatially. For this purpose, a rotating and searching path experiment was conducted with participants. This experiment showed that there was no statistically significant difference in the ability of the participants to orient in the real and virtual worlds spatially. In addition, the omnidirectional VR treadmill requires an adaptation time for the users due to the difficulty in the treadmill operation. However, there was no significant difference in the difficulty felt by the participants according to the adaptation time. Hence, these findings supported the possibility of collecting realistic walking data without safety concerns through an omnidirectional VR treadmill. Furthermore, this treadmill could be used in future research to solve problems directly related to pedestrian safety, such as the interaction between vehicles and pedestrians.

The Results of Various Vestibular Function Tests in Young Male Adult (장정에 시행한 몇가지 평가기능 검사성적에 대한 고찰)

  • 박찬일;추광철;노관택
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.2.3-2
    • /
    • 1972
  • The vestibular function test reveals the objective findings of the impairment of the vestibular labyrinth. It's purpose is based on the analysis of the findings and detect the location and etiology of the labyrinthine impairment. In the vestibular function test, the vestibulo-spinal reflex has the clinical significance upon the tonus of the striated muscles by the labyrithine stimulation and contribute to regulating the posture and the position, at rest as well as in motion. The vestibulo-spinal reflex must performe as one of the routine vestivular function test because it can be evoked in man by such weak stimuli to the labyrinth as cannot induce vestibulo-ocular reflex. Authors performed the vestibular function test such as one leg test, gait test, stepping test and vertical writing test to one hundred of healthy and young male adult and received the following results. Results 1. One leg test: In 30 seconds, the frequency of dropping the leg on the ground was between 0 to 3 times in Rt., and 0 to 5 times in Lt. The mean frequency was 0.48 times in Rt., and 0.68 times in Lt. 2. Gait test: In forward gait; the range of the deviation was distributed 0 to 100 cm and mean range was 22.5cm to the Rt., 26.1cm to the Lt. In backward gait; the range deviation was distributed 0 to 140cm and mean range was 35.4cm to the Rt., 33.0cm to the Lt. 3. Stepping test: In normal head position; forward movement war 93% and backward 5%. The angle of displacement deviated to the Rt. side in 36%, and Lt. in 50%. The angle of rotation deviated to the Rt. side in 53 %, and Lt. in 36%. The mean values: angle of displacement was 22.05 degrees, angle of rotation was 24.40 degrees, distance of displacement was 48.95cm. In backward head position; Forward movement was 94% and backward was 3%. The angle of displacement deviated in 34%, and Rt. in 55%, to the Rt. side The angle of rotation deviated to the Rt. side in 50%, and Lt. in 42%. The mean values; angle of displacement was 29.72 degrees, angle of rotation was 39.53 degrees, distance of displacement was 44.17cm. 44.17cm. 4. Vertical writing test: The angle of deviation was between 0 to 16 degrees in all cases, and was between 0 to 12 degrees in the cases of normal head position. The mean angle of deviation was between 4.15 to 5.76 degrees on each side. The direction of deviation to the Rt. side was 54~69%, Lt. was 25~40% and 3~7% was vertical without deviation.

  • PDF

A Case Study of Prosthetic Ambulation Training for Rotation-Plasty Client (하지 분절절제 및 회전재접합술자의 의지 보행훈련 증례연구)

  • Lee, Jeong-Weon;Chung, Nack-Su
    • Physical Therapy Korea
    • /
    • v.3 no.1
    • /
    • pp.65-72
    • /
    • 1996
  • The purpose of this study was to introduce rotation-plasty procedure and prosthetic ambulation training. The recent development of chemotherapy and diagnostic facility have permitted the orthopaedic surgeons to try limb saving procedures rather than amputations for the treatment of the malignant bone tumors. If the tumors around the knee joint were treated by mid-thigh amputation or hip disarticulation, it would impose the client with a great handicap for rehabilitation. Rotation-plasty procedure was first done by Borggreve, in 1930 for the congenital short femur. Recently this procedure was used a malignant bone tumor at the distal femur by Kotz and Salzer in 1982. In spite of its cosmetic problem of the distal stump, this procedure has the great functional advantage of converting the above-knee amputation to the below-knee amputation. The inverted foot was also good to control the prosthesis as a below-knee stump and heel functioned as a patella to support the body weight. This 15 years old girl case was had rotation-plasty due to osteosarcoma of the distal femur with 3rd postoperative chemotherapy, and admitted to Yonsei rehabilitation hospital for prosthetic ambulation training. Then, the case had excellent functional results of prosthetic ambulation training with rotaion-plasty after 3 months.

  • PDF

Clinical Characteristics of Hip Joint Rotations and Knee Adduction Moment through 3D Gait Analysis (3차원 보행분석을 통한 무릎 모음 모멘트와 고관절 내외회전의 임상적 특성)

  • Kim, Yongwook;Kang, Seungmook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.41-48
    • /
    • 2017
  • Purpose : The purpose of this study was to verify the relationships among the knee adduction moment, hip rotation range, strength of hip rotators, and Foot Posture Index of healthy young adults. Method : Thirty-two healthy adults(24 male, 8 females) participated in this study. Subjects performed 5 walking trials to evaluate the knee adduction moments using a three-dimensional motion analysis system. Hip rotation ranges and hip rotator strengths were measured using a standard goniometer and a handheld dynamometer, respectively. The mean of three trials of clinical tests was used for data analysis. Results : The first peak knee adduction moment was significantly correlated with the hip rotation ranges and hip rotator strengths (P<.05). The second peak knee adduction moment was showed significant correlations with hip external rotation and rotation ratio. There were no correlations between Foot Posture Index and all knee adduction moments (P>.05). Conclusion : This study suggests that imbalances of the range of motion and strength of the internal and external rotation of the hip joint can affect knee adduction moments. The impact may exacerbate musculoskeletal disorders such as osteoarthritis of the knee. Therefore, further studies should be conducted to evaluate the effects of clinical interventions to correct these imbalances on the reduction of the knee adduction moments in patients with knee osteoarthritis.

Precision Circular-path Walking of a Biped Robot with Consideration of Rotational Effects (회전효과를 고려한 이족 로봇의 정밀 원형 경로 보행)

  • Lim, Seungchul;Kwak, Byungmoon;Lim, Jooyoung;Son, Youngik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.299-309
    • /
    • 2014
  • When biped robots make turns, the ability to walk stably and precisely along any circular path is crucial. In this context, inverse kinematics solutions are found for accurate gait realization, and new zero moment point(ZMP) equations are derived with respect to the cyclindrical coordinate system to facilitate generation of stable walking patterns. Then, appropriate steady and transitional walking patterns are both proposed in form of time functons. Subsequently, walking patterns for a path but of different speeds are generated using the functions and associated formulas, and preliminarily checked for stability based on the ZMP equations. Upon comparison of those cases, one can see how and when robots may fall down during circular walking. Finally, those patterns are put to test on the sample robot by ADAMS(R) along with the inverse kinematics solutions and a new balance control scheme compensating for insufficient stability particulary during the initial transition period. Test results show that the robot can walk along the circular path as predicted at a resonably high speed despite the distributed mass and ground contact effects, validating effectiveness of the suggested approach.

Rotational Vertigo and Unsteady Gait Associated with Vestibular Cortical Infarction (전정피질경색과 연관된 회전성 현훈과 불안정보행)

  • Park, Kang Min;Kim, Sung Eun;Shin, Kyong Jin;Park, Jin Se;Kim, Si Eun;Kim, Hyung Chan;Ha, Sam Yeol
    • Annals of Clinical Neurophysiology
    • /
    • v.16 no.1
    • /
    • pp.32-34
    • /
    • 2014
  • A 77-year-old man developed acute vertigo and unsteady gait. Neurological examination revealed spontaneous left-beating nystagmus in the primary position. He fell to the left when walking without support. Magnetic resonance imaging showed an acute infarction involving the right parieto-temporal lobe. Although the vertigo and unsteady gait are most often associated with vestibular disorders involving the infratentorial structures, those may occur in cerebral infarction of the parieto-temporal lobe.

Effect of Rotation Curved Walking Training on Balance Confidence and Falls Efficacy in Early Stroke Patients: A Randomized Controlled Pilot Study (회전보행 훈련이 초기 뇌졸중 환자의 균형 자신감, 낙상 효능에 미치는 영향: 무작위 대조 예비 연구)

  • Joo, Min-Cheol;Jung, Kyeoung-Man;Jeong, Il-Seung
    • Quality Improvement in Health Care
    • /
    • v.26 no.1
    • /
    • pp.2-10
    • /
    • 2020
  • Purpose: This study aimed to determine the effect of curved walking training on balance confidence and fall efficacy in early stroke patients. Methods: The study included 16 early stroke patients who were randomly allocated to a curved walking training group (experimental group, N=8) and a straight walking training group (control group, N=8). Both groups performed the exercise 5 times a week for 3 weeks. Outcomes were assessed using the Activities-specific Balance Confidence (ABC) Scale, Fall Efficacy Scale (FES), Berg Balance Scale (BBS), and Timed Up and Go (TUG) test. Results: After 3 weeks of training, both groups showed significantly improved ABC, FES, BBS, and TUG (p<.05 in both groups). However, the ABC, FES, BBS, and TUG scores in the experimental group were significantly better than those in the control group (p<.05). Conclusion: These findings indicate that curved walking training may be effective at improving balance confidence and decreasing fall risk in early stroke patients. Therefore, curved walking training can be used as a recommended walking method in early stroke patients.