DOI QR코드

DOI QR Code

A Study on Validation of Omnidirectional VR Treadmill by Comparison of Spatial Orientation Skills

공간지향 능력 비교를 통한 전방향 VR 트레드밀의 유효성 검증 연구

  • Park, Hyunchul (Dept. of Urban Systems Eng., Kongju National University) ;
  • Oh, Taeho (Dept. of Civil Eng., Monash University) ;
  • Kim, Inhi (Dept. of Urban Systems Eng., Kongju National University)
  • 박현철 (국립공주대학교 도시융합시스템공학과) ;
  • 오태호 (Monash University 토목공학과) ;
  • 김인희 (국립공주대학교 도시융합시스템공학과)
  • Received : 2022.09.01
  • Accepted : 2022.09.19
  • Published : 2022.10.31

Abstract

An omnidirectional VR treadmill is a highly-immersive walking simulator that allows identical body movements, such as walking, running, and sitting. However, the operation difficulty of an omnidirectional VR treadmill may cause data reliability problems. Therefore, this study aims to verify the effectiveness of a VR treadmill by comparing the ability to orient in the real and virtual worlds spatially. For this purpose, a rotating and searching path experiment was conducted with participants. This experiment showed that there was no statistically significant difference in the ability of the participants to orient in the real and virtual worlds spatially. In addition, the omnidirectional VR treadmill requires an adaptation time for the users due to the difficulty in the treadmill operation. However, there was no significant difference in the difficulty felt by the participants according to the adaptation time. Hence, these findings supported the possibility of collecting realistic walking data without safety concerns through an omnidirectional VR treadmill. Furthermore, this treadmill could be used in future research to solve problems directly related to pedestrian safety, such as the interaction between vehicles and pedestrians.

전방향 VR 트레드밀은 걷기, 뛰기, 앉기 등 신체 동작을 현실적으로 수행할 수 있어 가상환경에 대한 몰입도가 높은 보행 시뮬레이터이다. 하지만 현실동작을 모사한 시뮬레이터이므로 조작 난이도가 높아 데이터의 신뢰성 문제를 야기할 수 있다. 따라서, 본 연구는 현실 및 일반적인 VR 조건과의 공간지향 능력 비교를 통해 전방향 VR 트레드밀의 유효성 검증을 목적으로 한다. 이를 위해 참가자의 공간지향 능력을 정량적으로 분석할 수 있는 회전 및 경로탐색 실험이 설계되었다. 실험 결과, 각 환경 조건 사이에서 공간지향 능력에 대해 유의한 차이가 없는 것으로 나타났다. 특히, 현실 및 VR 조건 사이에서 주관적인 난이도에 대해 유의한 차이가 발견되지 않았다. 이러한 연구 결과는 전방향 VR 트레드밀을 통해 안전 문제없이 양질의 데이터를 수집할 수 있음을 뒷받침한다. 나아가 차량과 보행자 사이의 상호작용과 같은 안전과 직결된 문제를 해결하기 위한 연구에 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-004)

References

  1. Boynton, A. C., Kehring, K. L. and White, T. L.(2011), "Biomechanical and Physiological Validation of the Omni-Directional Treadmill Upgrade as a Mobility Platform for Immersive Environments", ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD, pp.17-20.
  2. Bruder, G., Interrante, V., Phillips, L. and Steinicke, F.(2012), "Redirecting Walking and Driving for Natural Navigation in Immersive Virtual Environments", IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 4, pp.538-545. https://doi.org/10.1109/TVCG.2012.55
  3. Calandra, D., Lamberti, F. and Migliorini, M.(2019), "On the Usability of Consumer Locomotion Techniques in Serious Games: Comparing Arm Swinging, Treadmills and Walk-in-Place", 2019 IEEE 9th International Conference on Consumer Electronics(ICCE-Berlin), pp.348-352.
  4. Carbonell-Carrera, C. and Saorin, J. L.(2017), "Virtual Learning Environments to Enhance Spatial Orientation", Eurasia Journal of Mathematics, Science and Technology Education, vol. 14, no. 3, pp.709-719.
  5. Cherni, H., Metayer, N. and Souliman, N.(2020), "Literature review of locomotion techniques in virtual reality", International Journal of Virtual Reality, vol. 20, no. 1, pp.1-20. https://doi.org/10.20870/IJVR.2020.20.1.3183
  6. Cherni, H., Souliman, N. and Metayer, N.(2021), "Using virtual reality treadmill as a locomotion technique in a navigation task: Impact on user experience-case of the KatWalk", International Journal of Virtual Reality, vol. 21, no. 1, pp.1-14. https://doi.org/10.20870/IJVR.2021.21.1.3046
  7. Diersch, N. and Wolbers, T.(2019), "The potential of virtual reality for spatial navigation research across the adult lifespan", Journal of Experimental Biology, vol. 222, no. Suppl_1, p.jeb187252. https://doi.org/10.1242/jeb.187252
  8. Flanagin, V. L., Fisher, P., Olcay, B., Kohlbecher, S. and Brandt, T.(2019), "A bedside application-based assessment of spatial orientation and memory: Approaches and lessons learned", Journal of Neurology, vol. 266, no. 1, pp.126-138. https://doi.org/10.1007/s00415-019-09409-7
  9. Hollander, M., Wolfe, D. A. and Chicken, E.(2013), Nonparametric Statistical Methods, John Wiley & Sons, pp.1-8.
  10. Kelly, J. W., Cherep, L. A. and Siegel, Z. D.(2017), "Perceived Space in the HTC Vive", Association for Computing Machinery(ACM) Transactions on Applied Perception, vol. 15, no. 1, pp.2:1-2:16.
  11. Kennedy, R. S., Lane, N. E., Berbaum, K. S. and Lilienthal, M. G.(1993), "Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness", The International Journal of Aviation Psychology, vol. 3, no. 3, pp.203-220. https://doi.org/10.1207/s15327108ijap0303_3
  12. Kimura, K., Reichert, J. F., Olson, A., Pouya, O. R., Wang, X., Moussavi, Z. and Kelly, D. M.(2017), "Orientation in Virtual Reality Does Not Fully Measure Up to the Real-World", Scientific Reports, vol. 7, no. 1, p.18109. https://doi.org/10.1038/s41598-017-18289-8
  13. Kreimeier, J., Ullmann, D., Kipke, H. and Gotzelmann, T.(2020), "Initial Evaluation of Different Types of Virtual Reality Locomotion Towards a Pedestrian Simulator for Urban and Transportation Planning", Extended Abstracts of the 2020 Human-Computer Interaction(HCI) Conference on Human Factors in Computing Systems, pp.1-6.
  14. Mossberg, A., Nilsson, D. and Wahlqvist, J.(2021), "Evacuation elevators in an underground metro station: A Virtual Reality evacuation experiment", Fire Safety Journal, vol. 120, p.103091. https://doi.org/10.1016/j.firesaf.2020.103091
  15. Multon, F. and Olivier, A. H.(2013), "Biomechanics of walking in real world: Naturalness we wish to reach in virtual reality", In Steinicke, F., Visell, Y., Campos, J. and Lecuyer, A. eds. Human walking in virtual environments, Springer, pp.55-77.
  16. Read, J. M. and Saleem, J. J.(2017), "Task Performance and Situation Awareness with a Virtual Reality Head-Mounted Display", Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 61, no. 1, pp.2105-2109.
  17. Souman, J. L., Giordano, P. R., Frissen, I., Luca, A. D. and Ernst, M. O.(2010), "Making virtual walking real: Perceptual evaluation of a new treadmill control algorithm", Association for Computing Machinery(ACM) Transactions on Applied Perception, vol. 7, no. 2, pp.11:1-11:14.
  18. Stanney, K. M., Kennedy, R. S. and Drexler, J. M.(1997), "Cybersickness is Not Simulator Sickness", Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 41, no. 2, pp.1138-1142.
  19. Wolbers, T. and Hegarty, M.(2010), "What determines our navigational abilities?", Trends in Cognitive Sciences, vol. 14, no. 3, pp.138-146. https://doi.org/10.1016/j.tics.2010.01.001
  20. Yadav, N. and Kang, J.(2022), "The effects of partial proxy embodiment on the awareness of linear distance in omnidirectional treadmill enabled immersive virtual environment", Computers in Human Behavior Reports, vol. 6, p.100203. https://doi.org/10.1016/j.chbr.2022.100203
  21. Ye, Y., Shi, Y., Xia, P., Kang, J., Tyagi, O., Mehta, R. K. and Du, J.(2022), "Cognitive characteristics in firefighter wayfinding Tasks: An Eye-Tracking analysis", Advanced Engineering Informatics, vol. 53, p.101668. https://doi.org/10.1016/j.aei.2022.101668