Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan (Department of Bio-Mechatronic Engineering, College of Life Science & Technology, Sungkyunkwan University) ;
  • Seichi Takeuchi (Department of Electronic & Computer Engineering, Tokyo Denki University)
  • Published : 2002.06.01

Abstract

It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

운동 중에 있는 인체 무릎관절의 기능을 이해하기 위한 기구학적(Kinematic) 분석 과 동역학적(Kinetic) 분석을 행하는데 있어서 관절 표면의 기하학이 주요한 역할을 한다는 것은 잘 알려져 있다. 슬관절은 미끄러짐 (sliding)과 구름 (rolling) 운동을 고려하지 않고는 정확하게 모델 될 수 없다 본 연구에서는 미끄러짐 과 회전 운동 그리고 주요 인대 (ligament)를 고려한 3타원 인체 슬관절 모델을 제시한다 본 연구는. 슬관절의 전형적인측 평면 CT 영상의 확장으로부터 얻어진 두개의 캠 측면도를 이용하여 보다 실제에 가까운 관절의 기하학을 이용한 모델을 제시한다 개발된 모델은 보행 중 인체 슬관절을 통한 힘의 전달경로를 예측하는데 있어서 실험을 기초로 한 이전의 결과보고와 비교하여 볼 때 매우 잘 일치한다 대퇴골와 경골 사이의 접촉 점은 무릎의 굽힘이 진행되는 동안 전방에서 후방으로 이동하는데 이것은 무릎의 굽힘과 폄의 운동에 대한 전방/후방 운동의 커플링을 반영한 것이다. 본 연구에서 개발된 모델에 의하면 일회의 보행 사이클동안 경골 표면에 접촉 점의 전방/후방 이동변위는 바깥쪽 관절구 쪽이 약 16 mm 이고. 안쪽 관절구 쪽이 약 25 mm 이다 또한, 일회의 보행 사이클 동안 대퇴골 의 이동변위는 바깥쪽이 약 7 mm 그리고 안쪽이 약 10 mm 이다. 개발된 모델은, 관절의 퇴화를 진단 하는데 이용할 수 있는 가능성이 기대된다

Keywords

References

  1. Gait & Posture v.5 A Three-Dimensional Geometric Model of the Knee for the Study of Joint Forces in Gait D.R.Wilson;J.J.O'connor https://doi.org/10.1016/S0966-6362(96)01080-6
  2. Journal of Ortyopaedic Research Society v.8 no.3 Measurement of lower xtemity kinematics during level walking M.P.Kadaba;H.K.Ramakrishan;M.E,Wootten
  3. Journal of Biomechanics v.28 An inverse dynamics model for the analysis, Reconstuction and predication of bipedal walking B.Koopman;H.J.Grootenboer;H.J.de Jongh
  4. Jounal of Bimechanics v.21 no.12 A numerical method for simulation the dynamics of human walking M.G.Pandy;N.Berme
  5. Ph.D.Thesis Three-dimensional dynamic anatomically based model of the human tibio-femoral joint E.M.Abdel-Rahman
  6. Medical Engng. & Physics v.20 Three-Dimensional Dynamic Behavior of the Human Knee Joint under Impact Loading E.M.Abdel-Rahman;M.S.Hefzy https://doi.org/10.1016/S1350-4533(98)00010-1
  7. GCMA2000,Rochester,Minnesota Improved contact model of the human knee joint during gait J.H.Mun;S.J.Song;J.S.Freeman
  8. Gait & Posture human Gait Analysis Using Averaged Coordinate Reference System with Redudant Markers J.H.Mun;J.S.Freeman;K.Rim
  9. The Physiology of the Joints Annotated Diagrams of the Mechanics of Human Joints I.A.Kapandji
  10. J.Biomechanics v.18 Geometry and motion of the knee for impalnt and orthotic design H,Kurosawa;P.S.Walker;S.Abe;A.Grag;T.Hunter https://doi.org/10.1016/0021-9290(85)90663-3
  11. J.of Biomechanical Engineering v.105 A joint coordinate system for the clinical descroption of three-dimensional motions: application to the knee E.S.Grood;W.J.Suntay https://doi.org/10.1115/1.3138397
  12. The Biomedical Engineering Handbook J.D.Bronzino
  13. Keio J.Med v.25 The biomechanics of the knee joint with special reference to the contact area F.Iseki;T.Tomatsu https://doi.org/10.2302/kjm.25.37
  14. Gait & Posture v.7 Evaluation of dynamic anterior cruciate ligaments strain during ambulation S.F.Attfield;N.P.Gleeson;P,Pickering;D.Rees
  15. J.Biomechanics v.27 An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers G.A.Aeshian;W.M.Lai;W.B.Zhu;V.C.Mow https://doi.org/10.1016/0021-9290(94)90044-2
  16. Human Movement Science v.16 Multiple anatomicla landmark calibration for optimal bone pose estimation A.Cappello;A.Cappozzo;P.F.L.Palombara;L.Lucchetti;A,Leardini https://doi.org/10.1016/S0167-9457(96)00055-3
  17. J.Biomech.Engng v.112 An Analytical Model of Joint Contact A.W.Eberhardt;L.M.Keer;J.L.Lewis;V.Vithoontien https://doi.org/10.1115/1.2891204
  18. J.Biomech.Engng v.113 Contact of Layered Elastic Spheres as a Model of Joint Contact: Effect of Tangential Load and Friction A.S.Eberhardt;L.M.Keer;J.L.Lewis;V.Vithoontien https://doi.org/10.1115/1.2894076