In this paper, we develop an Intelligent Wheelchair(IW) control system for the people with various disabilities. The aim of the proposed system is to increase the mobility of severely handicapped people by providing an adaptable and effective interface for a power wheelchair. To facilitate a wide variety of user abilities, the proposed system involves the use of face-inclination and mouth-shape information, where the direction of an Intelligent Wheelchair(IW) is determined by the inclination of the user's face, while proceeding and stopping are determined by the shape of the user's mouth. To analyze these gestures, our system consists of facial feature detector, facial feature recognizer, and converter. In the stage of facial feature detector, the facial region of the intended user is first obtained using Adaboost, thereafter the mouth region detected based on edge information. The extracted features are sent to the facial feature recognizer, which recognize the face inclination and mouth shape using statistical analysis and K-means clustering, respectively. These recognition results are then delivered to a converter to control the wheelchair. When assessing the effectiveness of the proposed system with 34 users unable to utilize a standard joystick, the results showed that the proposed system provided a friendly and convenient interface.
Journal of the Institute of Convergence Signal Processing
/
v.6
no.1
/
pp.15-22
/
2005
In this paper, we propose a face recognition system by using the CCD color image. We first get the face candidate image by using YCbCr color model and adaptive skin color information. And we use it initial curve of active contour model to extract face region. We use the Eye map and mouth map using color information for extracting facial feature from the face image. To obtain center point of Log-polar image, we use extracted facial feature from the face image. In order to obtain feature vectors, we use extracted coefficients from DCT and wavelet transform. To show the validity of the proposed method, we performed a face recognition using neural network with BP learning algorithm. Experimental results show that the proposed method is robuster with higher recogntion rate than the conventional method for the rotation and scale variant.
The Journal of the Korea institute of electronic communication sciences
/
v.10
no.11
/
pp.1307-1314
/
2015
This study proposed a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. The algorithm proposed detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). Also, by applying the feature vector obtained for SVM, face areas can be tested. After the testing, the feature vector is applied to LDA and using Euclidean distance in the 2nd dimension, the final analysis and matching is performed. The algorithm proposed in this study could increase the stability and accuracy of recognition rates and as a large amount of calculation was not necessary due to the use of two dimensions, real-time recognition was possible.
As smart environment is spread out in our living environments, the needs of an approach related to Human Computer Interaction(HCI) is increases. One of them is head pose estimation. it related to gaze direction estimation, since head has a close relationship to eyes by the body structure. It's a key factor in identifying person's intention or the target of interest, hence it is an essential research in HCI. In this paper, we propose an approach for head pose estimation with pre-defined several directions by random forest classifier. We use canny edge detector to extract feature of the different facial image which is obtained between input image and averaged frontal facial image for extraction of rotation information of input image. From that, we obtain the binary edge image, and make two accumulated histograms which are obtained by counting the number of pixel which has non-zero value along each of the axes. This two accumulated histograms are used to feature of the facial image. We use CAS-PEAL-R1 Dataset for training and testing to random forest classifier, and obtained 80.6% accuracy.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.10
no.6
/
pp.609-616
/
2017
In this paper, we propose an algorithm to obtain more stable and high recognition rate by using left and right rotation information of input image in order to obtain a stable recognition rate in face recognition. The proposed algorithm uses the facial image as the input information in the web camera environment to reduce the size of the image and normalize the information about the brightness and color to obtain the improved recognition rate. We apply Principal Component Analysis (PCA) to the detected candidate regions to obtain feature vectors and classify faces. Also, In order to reduce the error rate range of the recognition rate, a set of data with the left and right $45^{\circ}$ rotation information is constructed considering the directionality of the input face image, and each feature vector is obtained with PCA. In order to obtain a stable recognition rate with the obtained feature vector, it is after scattered in the eigenspace and the final face is recognized by comparing euclidean distant distances to each feature. The PCA-based feature vector is low-dimensional data, but there is no problem in expressing the face, and the recognition speed can be fast because of the small amount of calculation. The method proposed in this paper can improve the safety and accuracy of recognition and recognition rate faster than other algorithms, and can be used for real-time recognition system.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.12
/
pp.107-119
/
1999
There is no authentic solution in a face detection problem though it is an important part of pattern recognition and has many diverse application fields. The reason is that there are many unpredictable deformations due to facial expressions, view point, rotation, scale, gender, age, etc. To overcome these problems, we propose an algorithm based on feature-based method, which is well known to be robust to these deformations. We detect a face by calculating a similarity between the formation of real face feature and candidate feature formation which consists of eyebrow, eye, nose, and mouth. In this paper, we use a steerable filter instead of general derivative edge detector in order to get more accurate feature components. We applied deformable template to verify the detected face, which overcome the weak point of feature-based method. Considering the low detection rate because of face detection method using whole input images, we design an adaptive skin-color filter which can be applicable to a diverse skin color, minimizing target area and processing time.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.4
s.310
/
pp.58-66
/
2006
In this paper, we apply DCM(Dilation of Color and Motion information) mask and Active Contour Models(Snakes) to extract facial outline in moving pictures with complex background. First, we propose DCM mask which is made by applying morphology dilation and AND operation to combine facial color and motion information, and use this mask to detect facial region without complex background and to remove noise in image energy. Also, initial curves are automatically set according to rotational degree estimated with geometric ratio of facial elements to overcome the demerit of Active Contour Models which is sensitive to initial curves. And edge intensity and brightness are both used as image energy of snakes to extract contour at parts with weak edges. For experiments, we acquired total 480 frames with various head-poses of sixteen persons with both eyes shown by taking pictures in inner space and also by capturing broadcasting images. As a result, it showed that more elaborate facial contour is extracted at average processing time of 0.28 seconds when using interpolated initial curves according to facial rotation degree and using combined image energy of edge intensity and brightness.
Limitations on the linear discriminant analysis (LDA) for face rerognition, such as the loss of generalization and the computational infeasibility, are addressed and illustrated for a small number of samples. The principal component analysis (PCA) followed by the LDA mapping may be an alternative that ran overcome these limitations. We also show that any schemes based on either mappings or template matching are vulnerable to image variations due to rotation, translation, facial expressions, or local illumination conditions. This entails the importance of a proper preprocessing that can compensate for such variations. A simple template matching, when combined with the geometrically correlated feature-based detection as a preprocessing, is shown to outperform mapping techniques in terms of both the accuracy and the robustness to image variations.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.11a
/
pp.151-154
/
2012
본 논문에서는 화상통신의 현실감을 증진시킬 수 있는 화자 간 시선 맞춤 시스템을 제안한다. 제안하는 방법은 Kinect 거리 카메라로부터 입력된 영상에서 화자의 얼굴 영역을 획득하여 화자의 시선이 카메라를 응시하도록 획득한 영역을 변환한 후에 원본 영상과 합성한다. Kinect 거리 카메라에서 획득한 얼굴 영역에는 다양한 형태의 잡음이 많아 미디언 필터와 모폴로지 연산을 통해 얼굴 영역의 잡음을 제거한다. 화자의 위치에 상관 없이 화자가 카메라를 응시하는 영상을 생성하기 위해서 Kinect 가 제공하는 거리 정보를 이용하여 시선 보정 각도와 회전 축을 획득한다. 시선이 보정된 얼굴 영역은 원본 영상에서 존재하지 않는 영역을 포함하고 있기 때문에, 원본 영상의 각 화소를 삼각형 메쉬로 구성한 후 해당 영역을 보간하여 최종적으로 시선이 보정된 영상을 생성한다. 제안하는 방법은 시선 맞춤 영상을 생성하는 데 필수적인 눈과 주변 얼굴 영역만 선택해서 변환하므로 영상의 왜곡이 적고 실시간 처리가 가능하다는 장점이 있다. 또한 카메라와 화자 사이의 거리 정보를 이용해 화자의 위치에 적응적인 시선 맞춤 영상을 생성할 수 있다. 실험을 통해 Intel i5 CPU 를 장착한 PC에서 $320{\times}240$ 크기의 영상을 사용할 경우 초당 약 35 프레임의 보정된 영상을 생성하여 제안하는 방법이 실시간 처리가 가능하다는 것을 확인하였다.
In this paper an extension to an original active shape model(ASM) for facial feature extraction is presented. The original ASM suffers from poor shape alignment by aligning the shape model to a new instant of the object in a given image using a simple similarity transformation. It exploits only informations such as scale, rotation and shift in horizontal and vertical directions, which does not cope effectively with the complex pose variation. To solve the problem, new shape alignment with 6 degrees of freedom is derived, which corresponds to an affine transformation. Another extension is to speed up the calculation of the Mahalanobis distance for 2-D profiles by trimming the profile covariance matrices. Extensive experiment is conducted with several images of varying poses to check the performance of the proposed method to segment the human faces.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.