Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features

Log-polar변환과 얼굴특징추출을 이용한 크기 및 회전불변 얼굴인식

  • 고기영 (동아대학교 전기전자컴퓨터공학부) ;
  • 김두영 (동아대학교 전기전자컴퓨터공학부)
  • Published : 2005.01.01

Abstract

In this paper, we propose a face recognition system by using the CCD color image. We first get the face candidate image by using YCbCr color model and adaptive skin color information. And we use it initial curve of active contour model to extract face region. We use the Eye map and mouth map using color information for extracting facial feature from the face image. To obtain center point of Log-polar image, we use extracted facial feature from the face image. In order to obtain feature vectors, we use extracted coefficients from DCT and wavelet transform. To show the validity of the proposed method, we performed a face recognition using neural network with BP learning algorithm. Experimental results show that the proposed method is robuster with higher recogntion rate than the conventional method for the rotation and scale variant.

본 논문은 CCD 칼라 영상을 이용하여 얼굴을 인식할 수 있는 방법을 제안한다. YCbCr 컬러모델에서 피부색에 대한 색상 정보와 적응적인 피부범위 확장을 통하여 얼굴후보영역을 추출하였다. 추출된 얼굴후보영역을 이용하여 곡선전개 방식의 초기곡선으로 사용하여 얼굴영역을 정확히 추출하였다. 얼굴의 특징점을 추출하기 위하여 얼굴영역에서 칼라정보를 이용한 Eye Map과 Mouth Map을 이용하였다. Log-polar변환의 중심점을 얻기 위하여 검출된 얼굴의 특징점을 이용하였다. 특징벡터를 추출하기 위하여 DCT, 웨이브렛 변환을 통하여 추출한 계수들을 이용하였다. 제안된 방법의 타당성을 검토하기 위하여 BP 학습알고리즘을 사용하는 신경망에서 얼굴인식을 수행하였다. 실험결과, 제안한 방법이 입력영상의 회전, 크기변화에 대하여 기존의 방법에 비하여 강인한 인식결과를 얻을 수 있었다.

Keywords