A Comparison of PCA, LDA, and Matching Methods for Face Recognition

얼굴인식을 위한 PCA, LDA 및 정합기법의 비교

  • 박세제 (경희대학교 전자공학과) ;
  • 박영태 (경희대학교 전자공학과)
  • Published : 2003.04.01

Abstract

Limitations on the linear discriminant analysis (LDA) for face rerognition, such as the loss of generalization and the computational infeasibility, are addressed and illustrated for a small number of samples. The principal component analysis (PCA) followed by the LDA mapping may be an alternative that ran overcome these limitations. We also show that any schemes based on either mappings or template matching are vulnerable to image variations due to rotation, translation, facial expressions, or local illumination conditions. This entails the importance of a proper preprocessing that can compensate for such variations. A simple template matching, when combined with the geometrically correlated feature-based detection as a preprocessing, is shown to outperform mapping techniques in terms of both the accuracy and the robustness to image variations.

얼굴 인식을 위한 주요 기법인 PCA, LBA 등과 같은 mapping에 의한 기법과 템플리트 정합기법 모두 얼굴 영역의 회전, 이동, 표정, 그리고 조명조건의 변화에 민감한 특성을 가진다. 본 논문에서는, 영상의 변화를 보상할 수 있는 전처리 과정으로서 기하학적 특징에 기반한 순수 얼굴영역검출기법을 도입하고 후처리 과정으로서 간단한 정합기법을 사용한 얼굴인식 기법을 제안한다. 제안한 기법은 PCA와 LDA 기법에 비해 영상의 변화에 민감하지 않고 높은 인식률을 보장할 수 있는 장점을 가진다.

Keywords

References

  1. M. A. Turk, A. P. Pentland, Face recognition using eigenfaces, Int. Conf. on Pattern Recognition, (1991) 586-591
  2. M. Kirby and L. Sirovich, Application of the Karhunen-Loeve procedure for the characterization of human faces, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 12, (1990) 103-108 https://doi.org/10.1109/34.41390
  3. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd Edition, John Wiley & Sons, (2001)
  4. Belhumeur P. N., Hespanha J. P., Kriegmaqn D. J., 'Eigenfaces vs. Fisherfaces : recognition using class specific Linear Projection,' IEEE Trans. on Pattern Analysis and Machine Intell., Vol.19, No.7, pp.711-720, 1997 https://doi.org/10.1109/34.598228
  5. A.Martinez and A.Kak: 'PCA versus LDA', IEEE Trans. On PAMI, 23(2):228-233, 2001 https://doi.org/10.1109/34.908974
  6. K. Etemad, R. Chellappa, Discriminant analysis for recognition of human face images, J. Opt. Soc. Amer. Vol. 14, No. 8, (1997) 1724-1733
  7. C. Liu, H. Wechsler, Enhanced Fisher Linear Discriminant Models for Face Recognition, 14th Int'l Conf. on Pattern Recognition, ICPR'98, Brisbane, Australia, August (1998) 17-20 https://doi.org/10.1109/ICPR.1998.711956
  8. R. Brunelli and T. Poggio, 'Face Recognition: Features versus Templates,' IEEE Trans. PAMI. , Vol. 15, pp.1042-1052, 1993 https://doi.org/10.1109/34.254061
  9. R. Brunelli, T. Poggio, Face recognition through geometrical features, Computer Vision, ECCV '92, Lecture Notes in Computer Science, (1992) 792-800
  10. 이대호, 박영태, 기하학적 특징에 기반한 순수 얼굴영역 검출기법, 한국정보과학회 논문집 (2003)
  11. A.M. Martinez, R. Benavente, The AR Face Database, CVC Technical Report #24, June (1998)
  12. T. Sim, R. Sukthankar, M. D. Mullin, S. Baluja, High-performance memory-based recognition for visitor identification, Tech. Report JPRC-TR-1999-001-1, Just Research, (1999)
  13. V. Brennan, J. Principe, Face classification using a multiresolution principal component analysis, Neural Networks for Signal Processing VIII, Proceedings of the 1998 IEEE Signal Processing Society Workshop, (1998) 506-515 https://doi.org/10.1109/NNSP.1998.710681
  14. S. H. Lin, S. Y. Kung, L. J. Lin, Face recognition/detection by probabilistic decision-based neural network, IEEE Transactions on Neural Networks, Vol. 8, No. 1, (1997) 114-132 https://doi.org/10.1109/72.554196
  15. B. Moghaddam, W. Wahid, A. Pentland, Beyond Eigenfaces: Probabilistic Matching for Face Recognition, Proc. of Int'l Conf. on Automatic Face and Gesture Recognition, (1998) 30-35 https://doi.org/10.1109/AFGR.1998.670921
  16. A. Pentland, B. Moghaddam, T. Starner, View-based and Modular Eigenspaces for Face Recognition, Proc. of IEEE Conf. on Computer-Vision and Pattern Recognition (CVPR'94), (1994) 84-91 https://doi.org/10.1109/CVPR.1994.323814