• Title/Summary/Keyword: 환경 제어 시스템

Search Result 3,900, Processing Time 0.031 seconds

PM10 and Associated Trace Elements in the Subway Cabin of Daejeon by Instrumental Neutron Activation Analysis (기기 중성자방사화 분석을 이용한 대전 지하철 객차 내 PM10과 미량성분의 특성)

  • Jeong, Jin Hee;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.459-467
    • /
    • 2016
  • In order to assess the pollution status and distribution characteristics of PM and PM-bound species, PM10 samples were collected using mini-volume air sampler at the subway cabin in Daejeon city. Measurements of about 24 elements including toxic metals (e.g., As, Cr, Mn, V, Zn) in PM10 were made by instrumental neutron activation analysis and X-ray fluorescence. The average PM10 concentration was $59.3{\pm}14.5{\mu}g/m^3$ in the subway cabin with a range of 42.2 to $97.4{\mu}g/m^3$, while the associated elemental concentrations were varied in the range of $10^{-3}$ to $10^5ng/m^3$. It was found that the concentration of Fe ($12.5{\mu}g/m^3$) was substantially higher than any other element. The Fe concentration was apportioned by about 20% of the PM10 concentration. The results of factor analysis indicate that there are no more than six sources in the cabin (e.g., brake-nonferrous metal particle, resuspended rail dust, fuel combustion, vehicle exhaust, black carbon, Cr-related).

Lightweight Authentication Scheme for Secure Data Transmission in Terrestrial CNPC Links (지상 CNPC 링크에서 안전한 데이터 전송을 위한 경량화된 인증기법)

  • Kim, Man Sik;Jun, Moon-Seog;Kang, Jung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.429-436
    • /
    • 2017
  • Unmanned Aerial Vehicles (UAV) that are piloted without human pilots can be commanded remotely via frequencies or perform pre-inputted missions. UAVs have been mainly used for military purposes, but due to the development of ICT technology, they are now widely used in the private sector. Teal Group's 2014 World UAV Forecast predicts that the UAV market will grow by 10% annually over the next decade, reaching $ 12.5 billion by 2023. However, because UAVs are primarily remotely controlled, if a malicious user accesses a remotely controlled UAV, it could seriously infringe privacy and cause financial loss or even loss of life. To solve this problem, a secure channel must be established through mutual authentication between the UAV and the control center. However, existing security techniques require a lot of computing resources and power, and because communication distances, infrastructure, and data flow are different from UAV networks, it is unsuitable for application in UAV environments. To resolve this problem, the study presents a lightweight UAV authentication method based on Physical Unclonable Functions (PUFs) that requires less computing resources in the ground Control and Non-Payload Communication (CNPC) environment, where recently, technology standardization is actively under progress.

Control Method for Performance Improvement of BLDC Motor used for Propulsion of Electric Propulsion Ship (전기추진선박의 추진용으로 사용되는 브러시리스 직류전동기의 제 어방법에 따른 성능향상에 관한 연구)

  • Jeon, Hyeonmin;Hur, Jaejung;Yoon, Kyoungkuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.802-808
    • /
    • 2019
  • DC motors are used extensively on shipboard, including as the ship's winch operating motor, owing to their simple speed control and excellent output torque characteristics. Moreover, they were used as propulsion motors in the early days of electric propulsion ships. However, mechanical rectifiers, such as brushes, used in DC motors have certain disadvantages. Hence, brushless DC (BLDC) motors are increasingly being used instead. While the electrical characteristics of both types of motors are similar, BLDC motors employ electronic rectifying devices, which use semiconductor elements, instead of mechanical rectifying devices. The inverter system for driving conventional BLDC motors uses a two-phase excitation method so that the waveform of the back electromotive force becomes trapezoidal. This causes harmonics and torque ripple in the phase current switching period in which the winding wire through which the current flows is changed. Researchers have studied and presented various methods to reduce the harmonics and torque ripple. This study applies a cascaded H-bridge multilevel inverter, which implements a proportional-integral speed current controller algorithm in the driving circuit of the BLDC motor for electric propulsion ships using a power analysis program. The simulation results of the modeled BLDC motor show that the driving method of the proposed BLDC motor improves the voltage waveform of the input side of the motor and remarkably reduces the harmonics and torque ripple compared with the conventional driving method.

Effect of graphene oxide on mechanical characteristics of polyurethane foam (산화그래핀이 폴리우레탄 폼 기계적 강도에 미치는 영향)

  • Kim, Jong-Min;Kim, Jeong-Hyeon;Choe, Young-Rak;Park, Sung Kyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.493-498
    • /
    • 2016
  • In the present study, graphene oxide based polyurethane foams were manufactured as a part of the development process of mechanically strengthened polyurethane foam insulation material. This material is used in a liquefied natural gas carrier cargo containment system. The temperature of the containment system is $-163^{\circ}C$. First, graphene oxide was synthesized using the Hummers' method, and it was supplemented into polyol-isocyanate reagent by considering a different amount of graphene oxide weight percent. Then, a bulk form of graphene-oxide-polyurethane foam was manufactured. In order to investigate the cell stability of the graphene-oxide-polyurethane foam, its microstructural morphology was observed, and the effect of graphene oxide on microstructure of the polyurethane foam was investigated. In addition, the compressive strength of graphene-oxide-polyurethane foam was measured at ambient and cryogenic temperatures. The cryogenic tests were conducted in a cryogenic chamber equipped with universal testing machine to investigate mechanical and failure characteristics of the graphene-oxide-polyurethane foam. The results revealed that the additions of graphene oxide enhanced the mechanical characteristics of polyurethane foam. However, cell stability and mechanical strength of graphene-oxide-polyurethane foam decreased as the weight percent of graphene oxide was increased.

A Study on the Circulating Water Purification System using Oxygen Solubilization and Diffusion Device (산소용해수와 확산장치를 결합한 순환형 수질정화 장치의 검증)

  • Ahn, Chang-Hyuk;Song, Ho-Myeon;Joo, Jin-Chul;Lee, Yeon-Ku;Kim, Il-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.318-318
    • /
    • 2011
  • 자연수를 가압(4~5기압)하면서 물과 공기의 비를 4:1~3:1로 혼합하면 수체 내 초미세기포(Diameter $3{\sim}10{\mu}m$)가 발생하는데 이를 산소용해수라 하며 수질정화시설 또는 양식장 등에 널리 사용되고 있다. 산소용해수의 특징은 기포의 비표면적이 넓고 10시간 이상 포화 농도를 유지하여 수체에 잔류하는 시간이 길기 때문에, 일반 산기석을 활용한 포기나 순산소 용해 등의 타 방법과 구별된다. 산소용해수의 산소전달효율은 기존 방법과 큰 차이를 보이기 때문에 실제 적용시에는 대상수를 이용하여 산소전달계수($K_{L}a$)를 사전에 산정할 필요가 있다. 본 연구에서는 한국건설기술 연구원의 안동 수자원 환경실험센터 내 실외형 콘크리트 사각반응수조에 산소용해장치 및 확산장치를 결합한 일체형 시스템을 적용시켜 2010년 9월~2011년 1월의 5개월간 결과를 분석, 본 장치의 $K_{L}a$를 산정 후 수질정화의 활용 면에서 검토하였다. $K_{L}a$의 산정에는 다양한 방법이 이용되나 용존 산소 농도의 제어에 한계가 있는 실외 대형실험장에 적합한 Lewis and Whitman의 Two-film 이론에 근거한 정상포기법을 적용하였다. 체적 $80m^3$의 수조 내에서 현장 유지용수를 대상으로 실험한 결과 산소전달계수는 $0.324\pm0.050$/min, 포화농도는 8.64 mg $O_2$/L, 도달시간은 11 /min이 산정되었으며, 이는 기존 산기석 포기의 산소전달계수 범위인 $0.105\pm0.019$ /min보다 약 3.1배 높은 결과를 보였다. 또한, 확산장치의 수류 순환 방향 및 정도를 검토하기 위하여 실험수조에서 1m단위로 격자를 구성한 후 초음파 유속계로 실측한 결과 0.0~2.5 m/s 의 평면적 유속범위를 도출하였다. 그리고 전체 순환을 고려했을 때 용존산소는 약 8시간 후 8.64 mg $O_2$/L 값에 도달하여 안정화 되었으며, 강한 수류순환과 산소용해수에 의해 하상에 존재하는 퇴적물들의 이송 및 산화촉진을 유도하였다. 이를 근거로 실험수조의 체적과 기준 가동시간인 8시간을 적용시켰을 때, 실험구 수질은 대조구와 비교하여 COD, T-N, T-P가 모두 25~35% 개선되었다. 이 결과는 여과공정 없이 단순 순환만을 고려한 물리적 수질정화 방법의 단독 활용 가능성을 나타내며, 기존 연구에서 나타난 SOD (Sediment oxygen demand) 저감 능력을 감안할 때 향후 폐쇄성 수역의 수질관리에도 효율적으로 활용할 수 있음을 시사한다.

  • PDF

Enhanced Cross-Layering Mobile IPv6 Fast Handover over IEEE 802.16e Networks in Mobile Cloud Computing Environment (모바일 클라우드 컴퓨팅 환경에서 IEEE 802.16e 네트워크에서의 향상된 교차계층 Mobile IPv6 빠른 핸드오버 기법)

  • Lee, Kyu-Jin;Seo, Dae-Hee;Nah, Jae-Hoon;Mun, Young-Song
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.45-51
    • /
    • 2010
  • The main issue in mobile cloud computing is how to support a seamless service to a mobile mode. Mobile IPv6 (MIPv6) is a mobility supporting protocol which is standardized by the Internet Engineering Task Force (IETF). Mobile IPv6 fast handovers (FMIPv6) is the extension of MIPv6 which is proposed to overcome shortcomings of MIPv6. Recently, fast handovers for Mobile IPv6 over IEEE 802.16e which is one of broadband wireless access systems has been proposed by the IETF. It was designed for supporting cross-layer fast handover. In this paper, we propose an enhanced cross-layering mobile IPv6 fast handover over IEEE 802.16e networks. In our scheme, a new access router generates a new address for the mobile node by using a layer 2 trigger. We utilize a layer 2 message which is sent from a new base station to the new access router in order to inform the new access router of information of the mobile node. A previous access router sends a binding update message to the mobile node's home agent when it acquires the new address of the mobile node. We evaluate the performance of the proposed scheme compared with the existing schemes in terms of the signaling cost and the handover latency. From the results, we observe that the proposed scheme can support fast handover effectively over IEEE 802.16e networks than existing schemes.

Water Quality Modeling of the Ara Canal, Using EFDC-WASP Model in Series (3차원 EFDC-WASP 연계모델을 이용한 경인아라뱃길 수질 예측)

  • Yin, Zhenhao;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • Ara Canal is the first artificial canal in Korea that connects the Han River and the Yellow Sea. Due to mixture of waters with different salinity and water quality, complicated hydrodynamic and water quality distributions are expected to occur inside the canal. An integrated hydrodynamic and water quality modeling system was developed using the 3 dimensional hydrodynamic model, EFDC (Environmental Fluid Dynamics Code) and the water quality model WASP (Water Quality Analysis and Simulation Program). According to the modeling results, BOD, TN, TP and Chl-a concentrations inside the canal were lower at the West Gate side than the Han River side since influent concentrations of the West Gate side are significantly lower. Chemical stratification due to salinity difference were more evident at the West Gate side as vertical salinity difference were more pronounced in this area. On the other hand, Chl-a concentrations showed more pronounced vertical distribution at the Han River side as Chl-a concentrations were higher in this area. It was notable that Dissolved Oxygen concentrations can be lower than 2 mg/L occasionally in the middle part of the canal. While major factor affecting DO concentrations in the canal are inflows via both gates, the other important factor was found to be BOD decay in the canal due to extended hydraulic residence time. This study can be used to predict hydrodynamic conditions and water quality in the canal during the year and thus can be helpful in the development of gate operation method of the canal.

Autonomous Path-Tracking Performance of an OmniX-Type Boat Based on Open-Source Ardupilot with RTK GPS (RTK GPS를 이용한 오픈소스 아두파일럿 기반 OmniX 보트의 자율주행 경로 추적성에 관한 연구)

  • An, Nam-Hyun;Gu, Bon-Kuk;Park, Hui-Seung;Jang, Ho-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.867-874
    • /
    • 2021
  • The IoT (Internet of Things) technology is rapidly becoming an important consideration in many engineering fields in the current 4th industrial era. In recent years, the concepts of digital shipbuilding and smart factories have been adopted as trends in shipyards. However, there is active interest in research on implementing autonomous driving in autonomous vehicles and airplanes, which is currently available in commercial form in a limited capacity. The present study is regarding the path-tracking performance of a boat to accomplish an autonomous driving mission using a flight controller (FC) and real-time kinematic (RTK) global positioning system (GPS) based on an open-source Ardupilot; an actual sea test is also performed using this system on a calm lake. The boat's mission is to evaluate the maneuverability of the self-driving process to a specific point and returning to the home position. For a given speed, the difference between the preset mission trajectory and actual operational trajectory was analyzed, and a series of studies were conducted on the applicability of the system to ships. In addition, the movements and maneuverability of the OmniX-type hull with four propellers were investigated, and the driving path-tracking performance was observed to increase by a maximum of 48%.

Effects of Production of Ever-bearing Strawberries Using Cool Air from Mushroom Cultivation House (버섯재배시설의 냉공기 이용이 사계성딸기 생산성에 미치는 영향)

  • Jeoung, Yun-Kyeoung;Park, Ju-Hyen;Ha, Tae Moon;Lee, Young-Suk;Seo, Myeong-Hoon;Kim, In-Chul
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • We designed a system that can automatically collect, convey, and control cool air of $15^{\circ}C-20^{\circ}C$ containing carbon dioxide from a mushroom cultivation house to a strawberry plastic house. We recorded the temperature at various positions from July to August 2017. The average temperature of the green house during day and at night was maintained at $33^{\circ}C$ and $26^{\circ}C$, respectively. In the moveable three-tier cylindrical bed, the average temperature around root was maintained at $26^{\circ}C$ and $21^{\circ}C$ during day and at night, respectively. On the high-bench in the green house, the temperature was maintained at $32^{\circ}C$ and $30^{\circ}C$ during day and at night, respectively. The carbon dioxide concentration was maintained around 800-1,600 ppm in the mushroom cultivation system and 400-800 ppm in the strawberry plastic house. The growth characteristics of the strawberry treated with moveable three-tier cylindrical bed were significantly different from those of the untreated high-bench bed. In addition, during the summer season, moveable three-tier cylindrical bed showed more tendency to increase in normal fruit number (NFN) and to decrease in defective fruit number (DFN) compare to the high-bench bed. Therefore, the moveable three-tier cylindrical bed showed a tendency to be more than 2 times higher yields than that of the high-bench bed. It was confirmed that ever-bearing strawberry cultivars could be cultivated in green house due to the cool air supply from the mushroom cultivation system in the summer season.

A Study on the Installation of a Sewage Separator Pipe inside an Existing Combined Sewer System for CSO Control (기존 합류식 하수관거에 CSO 제어를 위한 하수분리관의 설치에 관한 연구)

  • Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.85-93
    • /
    • 2021
  • Sewage separation which often involves installing a new pipe to separate wastewater flow from stormwater runoff flow can be costly and depends highly on its feasibility in a site. To be able to develop a potentially more economical alternative that can also lessen major road traffic disturbance during this process, a different approach where a smaller sewage separator pipe is installed inside an existing combined sewer pipe was investigated. A small-scale of a box sewer and the proposed sewage separator pipe was constructed in the laboratory to observe and compare the deposition of solids and other solid-associated major pollutants at different flow rates. In addition, three-dimensional flow simulations considering five different scenarios were conducted using Ansys Fluent to observe the effect of the proposed sewage separator pipe to the hydraulic flow if installed inside the combined sewer pipe. Results revealed that the deposition of TSS, TCOD, TN, and TP were reduced by at least 60% when the wastewater was conveyed by the sewage separator pipe instead of the combined sewer pipe. Moreover, the flow simulations conducted showed that there was little to no major disturbance in hydraulic flow and velocity distribution when the sewage separator was installed inside a straight pipe and even at pipe transitions such as intersections, turns, and drop in elevation. Considering the pipe dimensions and the results of the study, the proposed approach can be promising in terms of reduction in pollutant deposition without a major effect on the hydraulic flow. Further investigation and cost-analysis should be done in the future to support these preliminary findings and help alleviate the problems caused by combined sewer overflows by introducing an alternative approach.