DOI QR코드

DOI QR Code

지상 CNPC 링크에서 안전한 데이터 전송을 위한 경량화된 인증기법

Lightweight Authentication Scheme for Secure Data Transmission in Terrestrial CNPC Links

  • 김만식 (숭실대학교 컴퓨터학과) ;
  • 전문석 (숭실대학교 컴퓨터학과) ;
  • 강정호 (숭실대학교 평생교육원 정보보안학과)
  • 투고 : 2017.03.08
  • 심사 : 2017.04.18
  • 발행 : 2017.09.30

초록

무인기는 조종사가 탑승하지 않고 주파수를 통해 컨트롤 센터에서 원격으로 명령을 하달 받거나 미리 입력된 임무를 수행하며, 지금까지는 주로 군용으로 이용되었지만 ICT 기술 발전으로 인해 이제는 민간분야에서도 다양하게 이용되고 있다. Teal Group의 2014년 World UAV Forecast는 향후 10년간 무인기 시장은 매년 10%씩 성장하여 2023년에는 125억 달러에 이른다고 전망하였다. 그러나 무인기는 원격으로 조종되기 때문에 만약 악의적인 사용자가 원격으로 조종되는 무인기에 접근한다면 프라이버시를 크게 침해 하거나 재정적 손실이나 인명피해를 입힐 수 있는 문제점이 있다. 이러한 문제점을 해결 위해서는 반드시 무인기와 조종매체가 상호인증을 통해 보안채널을 구축해야 하지만, 기존 보안기법은 많은 컴퓨팅 자원과 파워를 요구하며, 통신 거리, 인프라, 데이터 흐름 등이 무인기 네트워크와 다르기 때문에 무인기 환경에 적용하기에는 적합하지 않다. 본 논문에서는 이러한 문제를 해결하기 위하여 현재 기술 표준화가 활발히 진행 중인 지상 Control and Non-Payload Communication (CNPC) 환경에서 적은 컴퓨팅 자원을 요구하는 PUF를 기반으로 경량화된 무인기 인증 기법을 제시한다.

Unmanned Aerial Vehicles (UAV) that are piloted without human pilots can be commanded remotely via frequencies or perform pre-inputted missions. UAVs have been mainly used for military purposes, but due to the development of ICT technology, they are now widely used in the private sector. Teal Group's 2014 World UAV Forecast predicts that the UAV market will grow by 10% annually over the next decade, reaching $ 12.5 billion by 2023. However, because UAVs are primarily remotely controlled, if a malicious user accesses a remotely controlled UAV, it could seriously infringe privacy and cause financial loss or even loss of life. To solve this problem, a secure channel must be established through mutual authentication between the UAV and the control center. However, existing security techniques require a lot of computing resources and power, and because communication distances, infrastructure, and data flow are different from UAV networks, it is unsuitable for application in UAV environments. To resolve this problem, the study presents a lightweight UAV authentication method based on Physical Unclonable Functions (PUFs) that requires less computing resources in the ground Control and Non-Payload Communication (CNPC) environment, where recently, technology standardization is actively under progress.

키워드

참고문헌

  1. C. Drubin, "The Global UAV Market 2015-2025," Microw. J., Vol.58, No.3, pp.53-54, Mar., 2015.
  2. Y. I. Bae and H. R. Shin, "Prerequisites for Drones Industry Development," Issue & Analysis, No.237, pp.1-25, 2016.
  3. S. J. Song and B. O. Kil, "A Study on the Glo UAV Market," KADIS, Vol.22, No.4, pp.49-76, 2015.
  4. B. Canis, "Unmanned aircraft systems (UAS): Commercial outlook for a new industry," Congressional Research Service, Washington, 2015.
  5. J. H. Jin and G. B. Lee, "Understanding and Trend of UAV / Dron," KICS, Vol.33, No.2, pp.80-85, 2016.
  6. A. R. Lee, "Weekly Tip - Industry," CRPC, Vol.53, 2017.
  7. J. H Lee, Y. T. Kim, J. Y. Seo, and S. J. Hwang, "2015 World Radiocommunication Conference (WRC-15)," TTP. J., Vol.163, pp.105-109, 2016.
  8. A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam, "Cyber security threat analysis and modeling of an unmanned aerial vehicle system," Homeland Security (HST), 2012 IEEE Conference on Technologies for. IEEE, pp.585-590, 2012.
  9. N. M. Rodday, R. D. O. Schmidt, and A. Pras, "Exploring security vulnerabilities of unmanned aerial vehicles," Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE, pp.993-994, 2016.
  10. J. H. Kim, B. K. Kim, and Y. T Shin, "A Study on the Improvement of security vulnerabilities in Civilian Drone," KIISE, pp.1069-1071, 2016.
  11. C. A. Gomez, "Cybersecurity of unmanned aircraft systems (UAS)," Diss. UTICA COLLEGE, 2015.
  12. F. Schenkelberg, "How reliable does a delivery drone have to be?" Reliability and Maintainability Symposium (RAMS), 2016 Annual, IEEE, 2016.
  13. H. W. Kim, K. S. Kang, D. I. Chang, J. Y. Ahn, "Technical and Standardization Trends on Control and Non-Payload Communications for Unmanned Aircraft Systems," ETRI, Vol.30, No.3, pp.74-83, 2015.
  14. R. J. Kerczewski, and J. H. Griner, "Control and Non-Payload Communications Links for Integrated Unmanned Aircraft Operations," 2012.
  15. J A. Kakar, "UAV communications: Spectral requirements, MAV and SUAV channel modeling, OFDM waveform parameters, performance and spectrum management," Diss. Virginia Tech, 2015.
  16. Y. H. Kang, "An Efficient Frequency Utilization Policy for UAS in Hyper-Connectivity Era," The Journal of Korean Institute of Electromagnetic Engineering and Science, Vol.26, No.10, pp.914-923, 2015. https://doi.org/10.5515/KJKIEES.2015.26.10.914
  17. R. Maes, "Physically Unclonable Functions," Springer, Berlin, 2013.
  18. G. E. Suh and S. Devadas, "Physical unclonable functions for device authentication and secret key generation," Proceedings of the 44th annual Design Automation Conference, ACM, 2007.
  19. B. Jenkins, "Watching the Watchmen: Drone Privacy and the Need for Oversight," Ky. LJ, Vol.102, pp.161-182, 2013.
  20. A. Studer, F. Bai, B. Bellur, and A. Perrig, "Flexible, extensible, and efficient VANET authentication," Journal of Communications and Networks, Vol.11, No.6, pp.574-588, 2009. https://doi.org/10.1109/JCN.2009.6388411
  21. G., Wang, B. S. Lee, and J. Y. Ahn, "Authentication and Key Management in an LTE-Based Unmanned Aerial System Control and Non-payload Communication Network," In Future Internet of Things and Cloud Workshops (FiCloudW), IEEE International Conference on, IEEE, pp.355-360, Aug., 2016.
  22. U. K. Verma, S. Kumar, and D. Sinha, "A secure and efficient certificate based authentication protocol for MANET," In Circuit, Power and Computing Technologies (ICCPCT), 2016 International Conference on, IEEE, pp.1-7, Mar., 2016.