본 논문은 확률적 변동성하의 통화옵션가격결정모형에 대하여 실증적으로 검증하였다. 연구결과 OTM, ATM, ITM에서 일정한 변동성을 가정하는 모형가격은 확률적 변동성하의 통화옵션가격결정모형에 비교하여 일치적으로 높게 나타나고 있으며 OTM옵션에 가격결정오차의 크기는 ATM 옵션보다 크게 나타나고 있다. 또한 옵션의 만기가 길수록 가격결정오차의 크기는 커진다는 것을 보여주고 있다. 확률적 변동성하의 통화옵션가격결정모형이 일정한 변동성을 가정하는 통화옵션가격결정모형보다 행사가격과 만기편의를 감소시키며 특히 단기의 만기를 가진 범위에서는 매우 큰 오차감소효과가 나타났다. 따라서 통화옵션가격결정모형을 이용하여 옵션가격을 예측함에 있어 환율변동성이 일정하다는 가정하에서 변동성을 모형에 투입하는 것보다는 환율변동성의 이분산성을 고려하여 추정된 변동성을 모형에 투입하는 것이 통화옵션가격의 예측력을 개선시킬 수 있다고 할 수 있다. 그리고 회귀분석결과 설명력을 나타내는 $R^2$값이 높게 나타나고 있으며, 확률적 변동성하의 통화옵션가격결정모형의 $R^2$값이 일정한 변동성을 가정하는 모형의 $R^2$보다는 높게 나타나고 있다.
This study examines the dynamic hedging performances of the Black-Scholes model and Heston model when stock prices drift with stochastic volatilities. Using Monte Carlo simulations, stock prices consistent with Heston's(1993) stochastic volatility option pricing model are generated. In this circumstance, option traders are assumed to use the Black- Scholes model and Heston model to implement dynamic hedging strategies for the options written. The results of simulation indicate that the hedging performance of a mis-specified Black-Scholes model is almost as good as that of a fully specified Heston model. The implication of these results is that the efficacy of the dynamic hedging performances on evaluating the specifications of alternative option models can be limited.
This paper uses the Efficient Method of Moments(EMM) of Gallant and Tauchen to estimate continuous-time stochastic volatility diffusion model for the Korean Composite Stock Price Index, sampled daily over $1995\sim2002$. The estimates display non-normality of stock index return, leptokurtic distribution, and stochastic volatility. Funker, this study suggests that two factor stochastic volatility model will be more desirable than one factor stochastic volatility model to estimate daily Korean stock return and also suggests that the stochastic volatility diffusions should allow for Poisson jumps of time-varying intensity.
본 연구에서는 우리나라 채권시장의 변동성 분석과 추정을 위하여 Markov-Switching ARCH (SWARCH)모형과 GMM모형 및 I-GARCH모형을 적용하였다. 관측된 자료는 1993년 1월에서부터 1996년 4월까지의 주별 91일물 양도성 예금증서 수익률이다. 본 연구에서 채권 수익률 분산과정의 추정을 위해 사용하는 SWARCH 모형은 경제나 채권시장의 국면전환으로 말미암아 채권수익률의 변동성이 이질적인 분포에서 오는 경우 서로 다른 분산 국면의 확률적 식별이 가능할 뿐만 아니라 지속성이 GARCH모형보다 작아서 조건부 변동성의 예측력이 뛰어난 모형으로 알려져 있다. 또한 SWARCH모형은 베이즈이론에 의한 확률의 개념으로 국면전환을 추정하기 때문에 주관적인 국면전환시점의 판단이 불필요하다는 장점을 가진다 여러 가지 모형들의 추정결과 I-GARCH 모형과 SWARCH 모형등이 우리나라 단기 채권수익률의 조건부 변동성을 비교적 잘 설명해 내는 것으로 나타났으며 우리나라 단기 채권시장은 1993년 6월부터 1993년 12월초까지, 1994년 7월경부터 1995년 5월경까지 비교적 높은 변동성을 유지하였으며 그후로는 변동성이 등락을 계속하는 것으로 추정되었다. 본 연구의 결과 아직은 태동단계에 머물러 있는 한국 채권시장의 시계열적 특성을 체계적으로 문서화하고 정교하고 다양한 최근 계량기법을 체계적으로 정리하고 응용하여 시장 참가자들의 기회비용과 시행착오의 기간을 단축시키는데 도움을 줄 수 있을 것으로 기대된다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.8-8
/
2018
전통적인 빈도해석은 정상성 가정을 기초로 단일 확률분포를 강우 및 홍수량 자료에 적용하는 과정을 통해 확률수문량을 추정하는 것을 목적으로 하고 있다. 그러나 전지구적인 기상학적 변동성 및 기후변화로 기인하는 극치수문량의 발생 빈도 및 양적 크기의 변화는 확률통계학적 관점에서 서로 다른 분포특성을 가지게 된다. 대표적인 기상변동성인 엘니뇨가 발생하는 경우 지역에 따라 홍수 및 가뭄이 발생 발생하게 되며, 이러한 극치수문량은 일반적으로 나타나는 홍수 및 가뭄의 분포특성과는 상이한 경우가 많다. 즉, 2개 이상의 확률분포 특성이 혼재된 혼합분포의 특성을 가지는 경우가 나타내게 되며 이를 고려한 빈도해석 기법의 개발 및 적용이 필요하다. 혼합분포를 활용한 빈도해석에서 가장 중요한 사항 중에 하나는 개별 분포에 적용되는 가중치를 추정하는 것으로서 통계학적 관점에서 자료의 특성에 근거하여 내재되어 있는 은닉상태(latent process)를 추정하는 과정과 유사하다. 이와 더불어 앞서 언급된 기상학적 변동성을 빈도해석에 반영하기 위한 비정상성 해석기법의 개발 및 적용도 필요하다. 본 연구에서는 혼합분포를 활용한 비정상성빈도해석모형을 개발하는데 목적이 있으며 개별매개변수의 동적거동 뿐만 아니라 가중치에 대한 시간적인 종속성도 고려할 수 있는 모형으로 동적모형으로 다양한 실험적 해석이 가능하다. 본 연구에서는 개발된 모형을 기반으로 엘니뇨와 같은 기상변동성에 따른 강우 및 홍수빈도해석 측면에서 은닉상태에 변화, 이로 인한 확률분포의 특성 및 설계수문량의 동적변동성을 평가하고자 한다.
The stochastic volatility (SV) model is one of the main methods of modeling time-varying volatility. In particular, SV model is actively used in estimation and prediction of financial market volatility and option pricing. This paper attempts to model the time-varying volatility of the bitcoin market price using SV model. Hidden Markov model (HMM) is combined with the SV model to capture characteristics of regime switching of the market. The HMM is useful for recognizing patterns of time series to divide the regime of market volatility. This study estimated the volatility of bitcoin by using data from Upbit, a cryptocurrency trading site, and analyzed it by dividing the volatility regime of the market to improve the performance of the SV model. The MCMC technique is used to estimate the parameters of the SV model, and the performance of the model is verified through evaluation criteria such as MAPE and MSE.
This paper tries to investigate the relationships among stock return volatility, time-varying risk premium and Korea Discount. Using Korean Composite Stock Price Index (KOSPI) return from January 4, 1980 to August 31, 2005, this study finds possible links between time-varying risk premium and Korea Discount. First of all, this study classifies Korean stock returns during the sample period by three regime-switching volatility period that is to say, low-volatile period medium-volatile period and highly-volatile period by estimating Markov-Switching ARCH model. During the highly volatile period of Korean stock return (09/01/1997-05/31/2001), the estimated time-varying unit risk premium from the jump-diffusion GARCH model was 0.3625, where as during the low volatile period (01/04/1980-l1/30/1985), the time-varying unit risk premium was estimated 0.0284 from the jump diffusion GARCH model, which was about thirteen times less than that. This study seems to find the evidence that highly volatile Korean stock market may induce large time-varying risk premium from the investors and this may lead to Korea discount.
In this study, from January 2015 to April 2020, we propose a stochastic volatility model to capture the leverage effect on daily freight yields in the dry cargo market and analyze the freight yields. Estimation involving the Bayesian Markov Chain Monte Carlo method for the leverage effect based on the negative correlation that exists between returns and volatility in stochastic volatility analysis yields similar estimates, and the statistcs indicates significant. That is, the results of the empirical analysis show that the degree of correlation between returns and volatility, and the magnitude and sign of fluctuations differ, which suggests that taking into account the leverage effect in the SV model improves the goodness of fit of the estimates. In addition to the statistical significance of the estimated model's leverage effect, the analysis by log predictive power score presents the estimated results with improved predictive power of the model considering the leveraged effect. These astatistically significant empirical results show that the stochastic volatility model considering the leverage effect is important for freight rate risk modeling in the marine industry.
본 논문은 도로투자 사업성분석시 사업주체의 현금흐름을 결정하는 항목들을 고정값(Deterministic Value)이 아닌 확률적으로 추정함으로써, 사업의 재무적 변동으로 인한 위험도를 민간사업자의 견지에서 사업성분석과정에 내재화하는 모형을 개발하는 것이다. 즉, 확률적 비용추정기법으로 국소적으로 활용되던 위험도분석을 재무모형에 내재화함으로써 사업의 재무적 변동을 보다 포괄적으로 분석할 수 있는 틀을 제공한다. 본 연구에서는 몬테카를로 시뮬레이션기법을 이용한 위험도분석(Risk Analysis)을 적용하여 사업성 평가지표와 비용의 확률밀도함수(Probability Density Function : PDF), 누적확률분포함수(Cumulative Distribution Function : CDF)를 산출하고, 그 결과로 해당 사업의 위험도를 고려하여 사업성을 평가한다. 이 모형은 사업의 모든 변동요인을 복합적으로 추정하여 사업기간 내 사업주체의 현금흐름을 분석할 수 있다. 따라서 사업주체는 효용에 따라 합리적인 위험도 관리 목표값(Target Value)을 선정하고, 사업의 위험도를 고려하여 건설비, 예비비를 결정할 수 있다. 본 연구에서 정립된 모형을 서울외곽순환고속도로(일산-퇴계원 구간)와 대전당진고속도로를 대상으로 사례분석을 수행하였다. 그 결과, 대전당진고속도로의 경우 사업성이 없으며, 서울외곽순환고속도로의 경우, 일부 위험도 발생변수를 합리적으로 관리한다면, 사업성이 충분한 것으로 분석되었다. 본 사례분석은 사업의 위험도를 반영한 사업성분석 방법으로 우리나라 민자유치대상고속도로의 사업성분석의 하나의 지침이 될 것이다.
Despite the stylized statistical features of returns of financial returns such as fat-tailed distribution and leverage effect, no stochastic volatility models that can explicitly capture these features have been presented in the existing frequentist approach. we propose an approximate parameterization of stochastic volatility models that can explicitly capture the fat-tailed distribution and leverage effect of financial returns and a maximum likelihood estimation of the model using Langrock et al. (2012)'s hidden Markov model approximation in a frequentist approach. Through extensive simulation experiments and an empirical analysis, we present the statistical evidences validating the efficacy and accuracy of proposed parameterization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.