References
- Abanto-Valle CA, Langrock R, Chen MH, and Cardoso MV (2017). Maximum likelihood estimation for stochastic volatility in mean models with heavy-tailed distributions, Applied Stochastic Models in Business and Industry, 33, 394-408
- Andrieu C, Doucet A, and Holenstein R (2010). Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society: Series B, 72(3), 269-342. https://doi.org/10.1111/j.1467-9868.2009.00736.x
- Asai M and McAleer M (2005). Dynamic asymmetric leverage in stochastic volatility models, Econometric Reviews, 24(3), 317-332. https://doi.org/10.1080/07474930500243035
- Asai M and McAleer M (2006). Asymmetric multivariate stochastic volatility, Econometric Reviews, 25(2-3), 453-473. https://doi.org/10.1080/07474930600712913
- Asai M and McAleer M (2011). Alternative asymmetric stochastic volatility models, Econometric Reviews, 30, 548-564. https://doi.org/10.1080/07474938.2011.553156
- Bartolucci F and De Luca G (2001). Maximum likelihood estimation of a latent variable time-series model, Applied Stochastic Models in Business and Industry, 17, 5-17. https://doi.org/10.1002/asmb.426
- Bartolucci F and De Luca G (2003). Likelihood-based inference for asymmetric stochastic volatility models, Computational Statistics and Data Analysis, 42, 445-449. https://doi.org/10.1016/S0167-9473(02)00215-3
- Black F and Scholes M (1973). The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637-654. https://doi.org/10.1086/260062
- Bos CS (2012). Relating Stochastic Volatility Estimation Methods, In: L Bauwens, CM Hafner and S Laurent (Ed.), Handbook of Volatility Models and Applications, Wiley & Sons, 147-174.
- Broto C and Ruiz E (2004). Estimation Methods for Stochastic Volatility Models: A Survey, Journal of Economic Surveys. 18(5), 613-649. https://doi.org/10.1111/j.1467-6419.2004.00232.x
- Christie A (1982). The stochastic behavior of common stock variance value, leverage and interest rate effects, Journal of Financial Economics, 10, 407-432. https://doi.org/10.1016/0304-405X(82)90018-6
- FridmanMand Harris L (1998). A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models, Journal of Business and Economic Statistics, 16, 284-291.
- Geweke J (1992). Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments, in JO Berger, JM Bernardo, AP Dawid, and AFM Smith (Ed.), Bayesian Statistics 4, 169-194.
- Hamilton J (1994). Time Series Analysis. Princeton University Press, Hamilton, Princeton, NJ.
- Hong Y and Li H (2005). Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates, Review of Financial Studies, 18, 37-84. https://doi.org/10.1093/rfs/hhh006
- Jacquier E, Polson NG, and Rossi PE (2004). Bayesian Analysis of Stochastic Volatility Models with Leverage Effect and Fat tails, Journal of Econometrics, 122, 185-212. https://doi.org/10.1016/j.jeconom.2003.09.001
- Kim T and Park J (2017). Bayesian Model Comparison for Stochastic Volatility Models of Short Term Interest Rates. Journal of Money and Finance, 31(3), 179-233. https://doi.org/10.21023/JMF.31.3.6
- Kitagawa G (1987). Non-Gaussian State-Space Modeling of Nonstationary Time Series (with discussion), Journal of American Statistical Association, 82, 1032-1063.
- Langrock R, MacDonald IL, and Zucchini W (2012). Some nonstandard stochastic volatility models and their estimation using structured hidden Markov Models, Journal of Empirical Finance, 19, 147-161. https://doi.org/10.1016/j.jempfin.2011.09.003
- Lindsten F, Jordan MI, and Schon TB (2014). Particle Gibbs with Ancestor Sampling, Journal of Machine Learning Research, 15, 2145-2184.
- Malik S and Pitt MK (2011). Particle filters for continuous likelihood evaluation and maximisation, Journal of Econometrics, 165, 190-209. https://doi.org/10.1016/j.jeconom.2011.07.006
- Mao X, Czellar V, Ruiz E, and Veiga H (2020). Asymmetric stochastic volatility models: Properties and particle filter-based simulated maximum likelihood estimation, Econometrics and Statistics, 13, 84-105. https://doi.org/10.1016/j.ecosta.2019.08.002
- Omori Y, Chib S, Shephard N, and Nakajima J (2007). Stochastic volatility with leverage: fast likelihood inference, Journal of Econometrics, 140, 425-449. https://doi.org/10.1016/j.jeconom.2006.07.008
- Silverman BW (1986). Density Estimation. Chapman and Hall, London.
- Pitt MK, Malik S, and Doucet A (2014). Simulated likelihood inference for stochastic volatility models using particle filtering, Annals of the Institute of Statistical Mathematics, 66(3), 527-552. https://doi.org/10.1007/s10463-014-0456-y
- Rivers D and Vuong Q (2002). Model selection tests for nonlinear dynamic models, Econometrics Journal, 5, 1-39. https://doi.org/10.1111/1368-423X.t01-1-00071
- Rosenblatt M (1952). Remarks on a Multivariate Transformation, Annals of Mathematical Statistics, 23, 470-472. https://doi.org/10.1214/aoms/1177729394
- Taylor SJ (1982). Financial returns modelled by the product of two stochastic processes - a study of the daily sugar prices 1961-75, In: OD Anderson (Ed.), Time Series Analysis: Theory and Practice 1, North-Holland, Amsterdam, 203-226.
- Taylor SJ (1984). Modelling Financial Time Series, Wiley, Chichester.
- Yu J (2012). Simulation-Based Estimation Methods for Financial Time Series Models, In: JC Chuan, WK hardle, and HE Gentle (Ed.), Handbooks of Computational Finance, Springer, 401-435.
- ZucchiniWand MacDonald IL (2009). Hidden Markov Models for Time Series: An Introduction Using R, Chapman and Hall/CRC Press, London and Boca Raton.