• Title/Summary/Keyword: 화재 유동해석

Search Result 138, Processing Time 0.032 seconds

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part II: Multi-dimensional Fire Dynamics) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향 (Part II: 다차원 화재거동))

  • Kim, Jong-Hyun;Ko, Gwon-Hyun;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.32-38
    • /
    • 2010
  • Multi-dimensional fire dynamics were studied numerically with the change in ventilation conditions in a full-scale ISO 9705 room. Fire Dynamic Simulator (FDS) was used for the identical conditions conducted in previous experiments. Flow rate and doorway width were changed to create over-ventilated fire (OVF) and under-ventilated fire (UVF). From the numerical simulation, it was found that the internal flow pattern rotated in the opposite direction for the UVF relative to the OVF so that a portion of products recirculated to the inside of compartment. Significant change in flow pattern with ventilation conditions may affect changes in the complex process of CO and soot formation inside the compartment due to increase in the residence time of high-temperature products. The fire behavior in the UVF created complex 3D characteristics of species distribution as well as thermal and flow structures. In particular, additional burning near the side wall inside the compartment significantly affected the flow pattern and CO production. The distribution of CO inside the compartment was explained with 3D $O_2$ distribution and flow patterns. It was observed that gas sampling at local positions in the upper layer were insufficient to completely characterize the internal structure of the compartment fire.

Effect of Platform Screen Door on fire in the subway station (스크린도어가 설치된 지하철 승강장의 화재유동 전산 수치 모사를 이용한 스크린도어의 화재 영향 연구)

  • Jang, Yong-Jun;Jung, Woo-Sung;Park, Won-Hee;Kim, Hag-Beom
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1337-1345
    • /
    • 2007
  • The present study is a basic investigation for systematically proceeding disaster prevention studying the effect of platform screen door in case of fire at the subway station. In the paper, the characteristics of screen door were surveyed and described. The fully closed platform screen door and the island type of subway station were employed for simulation-study. Numerical simulations of fire driven flow at the subway station with platform screen door were performed with commercial fire CFD code. For analyzing of the effect of platform screen door, the fire simulations with and without the platform screen door were compared. For the fire location, the one is located on the platform and the other case on the railway. The Ultrafast model was taken as fire growth scenario. The maximum heat release rate was 10MW. The propagated time of the heat and smoke to stairs was within 4 minute when the fire is located on the platform. However the heat and smoke propagation was block off by screen door when the fire is located on the railway.

  • PDF

A Study of Smoke Movement in Tunnel Fires (터널내에서 화재 발생시 연기 거동에 대한 연구)

  • 김상훈;김성찬;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2000
  • In this study, reduced-scale experiments as the alternative to a real-scale fire test were conducted to understand fire properties in tunnel, and their results were compared with those of numerical simulation. The 1/20 scale experiments were conducted under the Froude scaling since smoke movement in tunnel is governed by buoyancy farce. A numerical simulations were on performed 3D unstructured meshes with PISO algorithm and buoyant plume models. Results showed that data was in reasonable agreement with the numerical data of smoke velocity, temperature distribution, and clear height.

  • PDF

The Study of Air Sampling Smoke Detector (공기흡입형 연기감지장치에 관한 연구)

  • 이복영;이병곤
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-91
    • /
    • 2003
  • Since the air stream in the room controlled by HVAC system affects on he expected response of conventional detectors which are designed in accordance with normal characteristics of air stream in the fire incident, unexpected operation time delay may occur in fire. In order to solve this problem and to improve sensitivity so that to initiate fire in its early stages for minimizing damage and protecting people, we studied and developed Air Sampling Smoke Detector. The Air Sampling Smoke Detector is a kind of active-type fire detection system. it draws air continuously from the protected area through an air sampling pipe network to the smoke density analyzer. This study presents smoke density analysing technique and air intake balancing technique through an air sampling pipe network. As a result of evaluating, Air Sampling Smoke Detector was much more sensitive than conventional smoke detectors that passively wait for smoke to reach them and was not affected by ambient airflow in the room by means of balanced air intake through the sampling holes.

A Sensitivity Study of the Number of Parcels to the Numerical Simulation of Sprinkler Sprays (통계적 액적군집수에 따른 스프링클러 분무해석의 민감도에 관한 연구)

  • Kim, Sung-Chan;Lee, Sang-Woo;Park, Won-Ju
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.48-54
    • /
    • 2009
  • The present study has been performed to investigate the effect of statistical number of droplets on the simulation of the sprinkler spray using fire field model. In order to simulate the sprinkler spray characteristics, the present study uses NIST Fire Dynamics Simulator version 5.2. A group of Lagrangian particles with similar droplet characteristics, such as diameter, velocity, temperature and so on, is represented by parcel concept to decrease the total number of droplets tracked in the simulation. The present study introduces a new parameter to represent the ratio between real number of droplets and computational parcels. The dependency of the number of parcels on the fire suppression characteristics and spray patterns is quantitatively examined for different ratio between the real number of droplets and computational parcels.

실내가연물의 유독가스 방출특성에 관한 연구

  • Kim, Hong;Oh, Kyu-Hyung;Lee, Young-Sub;Kim, Dong-Hyun;Ham, Sang-Geun
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.186-189
    • /
    • 2000
  • 국내의 건축물의 화재안전성 평가는 화재안전성을 고려한 공간구성, 연기의 유동, 거주자의 피난계획 및 피난성능평가, 건축물 내부에 설치된 방화설비계통의 화재안전성능평가 등을 연구하여 왔다. 그런데 이들 연구의 대부분은 건축물의 공간적 특성분석과 주거여건 등을 고려한 기초자료의 파악 및 분석 등을 국내의 여건과는 상이한 국외의 자료를 근거로 하거나 2차원적인 해석 및 평가에 그치고 있는 경향이 있다. (중략)

  • PDF

The development of parallel computation method for the fire-driven-flow in the subway station (도시철도역사에서 화재유동에 대한 병렬계산방법연구)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Park, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1809-1815
    • /
    • 2008
  • This experiment simulated the fire driven flow of an underground station through parallel processing method. Fire analysis program FDS(Fire Dynamics Simulation), using LES(Large Eddy Simulation), has been used and a 6-node parallel cluster, each node with 3.0Ghz_2set installed, has been used for parallel computation. Simulation model was based on the Kwangju-geumnan subway station. Underground station, and the total time for simulation was set at 600s. First, the whole underground passage was divided to 1-Mesh and 8-Mesh in order to compare the parallel computation of a single CPU and Multi-CPU. With matrix numbers($15{\times}10^6$) more than what a single CPU can handle, fire driven flow from the center of the platform and the subway itself was analyzed. As a result, there seemed to be almost no difference between the single CPU's result and the Multi-CPU's ones. $3{\times}10^6$ grid point one employed to test the computing time with 2CPU and 7CPU computation were computable two times and fire times faster than 1CPU respectively. In this study it was confirmed that CPU could be overcome by using parallel computation.

  • PDF

Numerical study on the foam spraying for AFDSS applicable to initial fire suppression in large underground spaces (지하대공간 초동 화재진압에 적용가능한 자율형 소화체계의 폼 분사 해석 기법 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.503-516
    • /
    • 2021
  • Autonomous fire detection and suppression system requires advanced technology for complex detection technology and injection/control technology for accurate hitting by fire location. Also, foam spraying should be included to respond to oil fires. However, when a single spray monitor is used in common, water and foam spray properties appear different, so for accurate fire suppression, research on the spray trajectory and distance will be required. In this study, experimental studies and numerical analysis studies were combined to analyze the foam spray characteristics through the spray monitor developed for the establishment of an autonomous fire extinguishing system. For flow analysis of foam injection, modeling was performed using OpenFOAM analysis software, and the commonly used foaming agent (Aqueous Film-Forming Foam) was applied for foam properties. The injection distance analysis was performed according to the injection pressure and the injection angle according to the form of the foam, and at the same time, the results were verified and presented through the injection experiment.

Flow Analysis of Building Pressurization System for Smoke Control (건물의 가압방연시스템 설계를 위한 유동해석에 관한 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.14-20
    • /
    • 2000
  • Many pressurization systems are designed and built with the goal of providing a smoke-free escape route in the event of a building fire. A secondary objective is to provide a smoke-free staging area for fire fighters. In the present study, a computer program is developed to calculate pressure loss and flow rate at several building elements such as a room, a ]tabby a staircase and an air supply shaft. By the program as the dosing tool for the pressurization system, the capacity of the injection fan is calculated, and the design method is proposed for the optimization of the fan capacity.

  • PDF

A Study of Smoke Movement in a Short Tunnel (짧은 터널 내의 연기거동에 관한 연구)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Kim, Chung-Ik;Hong, Ki-Bae
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • This paper concerns smoke propagation in tunnel fires with various size of fire source. Experiments carried out in model tunnel and those results were compared with numerical results. The Froude scaling law was used to scale model tests for comparison with larger scale tests. In order to validate for numerical analysis, temperature distribution of predicted data was compared with measured data. Examining the temperature distribution, we found that smoke layer does not come down under 50% of tunnel heights for a short tunnel heights for a short tunnel firs without ventilation. Front velocity of smoke layer is proportional to the cube root of heat release rate. And it is in good agreement with existing empirical expression and numerical prediction. In a short tunnel fire, horizontal propagation of smoke layer is more important than vertical smoke movement for evacuation plan.