• Title/Summary/Keyword: 화석정(花石亭)

Search Result 85, Processing Time 0.034 seconds

Evaluation of Greenhouse Gas Emissions for Life Cycle of Mixed Construction Waste Treatment Routes (혼합 건설폐기물 처리경로별 전과정 온실가스 발생량 평가)

  • Kim, Da-Yeon;Hwang, Yong-Woo;Kang, Hong-Yoon;Moon, Jin-Young
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.56-64
    • /
    • 2022
  • Construction waste is generated at a rate of approximately 221,102 tons/day in Korea. In particular, mixed construction waste generates approximately 24,582 tons/day. The other components were recycled by 98.9%. The amount of greenhouse gas emissions from the waste was 17.1 million tons of CO2 equaling 2.3% of the total greenhouse gas emissions. To reduce greenhouse gas emissions, reducing the environmental impact is becoming increasingly important. However, appropriate treatment must first be established, as mixed construction waste is also increasing. Thus, an effective plan is urgently needed because it is frequently segregated and sorted by the landfill and incinerated. In addition, there is an urgent need to prepare various effective recycling methods rather than a simple treatment. Therefore, this study analyzed the environmental impact of the treatment of mixed construction waste by calculating greenhouse gas emissions. As a result, the highest greenhouse gas generation occurred during the incineration stage. Moreover, the optimal method to reduce greenhouse gas emissions is recycling and energy recovery from waste. In addition, the amount of greenhouse gas generated during energy recovery from the waste stage was the second highest. However, greenhouse gas emissions can be reduced by using waste as energy to reduce fossil fuel consumption. In addition, for the transportation stage, the optimal reduction plan is to minimize the amount of greenhouse gas emissions by setting the optimal distance and applying biofuel and electric vehicle operations.

Analysis of Carbon Emission from a Forward Osmosis and Reverse Osmosis Hybrid System for Water Reuse and Seawater Desalination (하수재이용 및 해수담수화를 위한 정삼투-역삼투 융합공정의 탄소배출량 분석)

  • Jeon, Jongmin;Kim, Suhan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.351-357
    • /
    • 2022
  • A conventional seawater reverse osmosis (SWRO) and a forward osmosis (FO) and reverse osmosis (RO) hybrid process to produce 1,000 m3/d of fresh water, were designed and compared in terms of carbon emission. When FO was adapted for the osmotic dilution, the required pressure for RO decreases, and thus energy consumption decreases. The decrease in carbon emission by decreased energy consumption (up to -0.73 kgCO2/m3 using coal as the energy source) was compared with the increase in carbon emission by the FO system (+0.16 kgCO2/m3), which is a function of various factors such as the number of FO modules and energy consumption. The comparison revealed that the FO-RO process causes less carbon emission compared with the SWRO process when the energy sources are coal and oil. However, if energy sources with low carbon emission such as solar, wind, and nuclear energy are selected, the carbon emission of the FO-RO process becomes higher than that of the SWRO process. This implies that the type of energy source is a key factor to determine the necessity of the FO-RO process from the aspect of carbon emission.

Seasonal Change Analysis of Groundwater in Nakdong Riverside Greenhouse Complex Using Groundwater Monitoring (지하수관측을 이용한 낙동강변 시설농업단지 지하수의 계절적 변화 분석)

  • Baek, Mi Kyung;Shin, Hyun Chae;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.283-283
    • /
    • 2020
  • 국가의 논의 타작물 재배 권장 정책과 농한기 수익을 위해서 동절기에도 농사가 가능한 시설농업이 발달했으며, 1990년 초부터 재배면적이 증가하여 2000년에는 10만 ha를 넘어섰고, 2018년에는 80만ha의 규모를 보이고 있다(농사로, 2019). 시설농업단지의 동절기 난방을 위한 에너지원으로 화석연료와 전기열원을 사용하고 있고, 특히 강변의 경우 지하수를 난방 열원으로 사용가능해 수막재배를 이용한 대규모 시설단지가 발달함에 따라 지하수의 이용량이 증가하고, 2015년 농업용 지하수 이용량은 연간 20억 톤에 이른다(GIMS, 2019). 난방이 필요한 동절기에 수막용수를 위한 지하수 이용량이 급증하여 계절적인 수위변화를 보이며, 특히 강변의 대규모 시설농업단지의 지하수의 부족현상이 빈번히 발생하는 실정이다(송성호, 2017). 본 연구지역은 낙동강 하구댐 설치 전만조 시 해수의 유입으로 암반지하수의 심도가 증가할수록 EC가 증가하는 특성을 보이는 곳으로, 지하수의 이용량이 급증하는 동절기에 특히 급격히 증가하여 지하수의 안정적인 수질관리를 위해 염분변화의 관리가 필요한 지역이다. 지하수의 계절적인 변화를 위해 시설농업단지내에 지하수 관측정이 설치되어 관측되고 있으며 본 연구에서는 관측정의 2013년 1월~2019년 1월까지 지하수의 EC변화를 관측하였다. 지하수의 수위(GL.m), 온도, EC를 1시간 주기로 관측하여 계적적인 변화를 분석하였고, EC의 증가가 큰 곳은 심도별로 센서(다중심도)를 설치하여 염도의 변화를 관측하였다. 지하수성분의 지질학적 기원분석을 위한 양음이온 분석을 연 1회 실시하였다. 또한 관측정의 심도별 변화를 알기 위해 동일지역에 충적, 암반 관측정을 따로 설치하고 관측하여 지표수와 지하수의 심도별 영향의 차이를 분석하였다. 동일지역의 관측결과 평균 5m이하의 수위변화를 보이나, 5m 이상의 수위변동을 보이는 관측망은 15년 14개소 17년 19개소로 증가추세를 보이며, 이는 주로 밀집된 시설하우스 단지의 수막재배를 위한 겨울철 지하수 사용량 증가가 원인인 것으로 판단된다. 본 연구지역은 강변지역에 밀집된 시설하우스단지의 동절기 수막재배를 위한 지하수 과다 사용으로 수위급감 및 수량부족현상이 반복되고 있어, 예방과 대책강구를 위해 지표수의 함양과 지하수사용량의 상관관계 분석과 자료축적 및 추가연구를 위한 장기관측이 요구된다.

  • PDF

Heating Performance of Hot Water Supplying System in Greenhouse (온수배관을 이용한 온실의 난방성능)

  • Yoon, Yong-Cheol;Shin, Yik-Soo;Kim, Hyeon-Tae;Bae, Seoung-Beom;Choi, Jin-Sik;Suh, Won-Myung
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.79-87
    • /
    • 2012
  • This research was conducted to obtain basic data with regard to the heating performance that would be produced by installing an aluminum hot water pipe inside the greenhouse with the goal of reducing the heating energy in greenhouse. The research results are summarized as follows. The degree of difference in relation to the temperature by height within the greenhouse during the entire experiment was significant - within the range of 4.0~$7.0^{\circ}C$. The temperature difference between incoming and outgoing water was about $3.3^{\circ}C$ greater when FCU was activated compared to when it was not activated. Meanwhile, the amount of energy consumed increased about 36.2~40.1%. The amount of pyrexia per hour also increased by 44.6~52.0%. During the experiment period, circulated flux was within the range of 0.48~$0.49L{\cdot}s^{-1}$ while average fluid speed was 1.53~$1.56m{\cdot}s^{-1}$. The average temperature difference between incoming and outgoing water was 6.24~$11.50^{\circ}C$. The amount of heating value by each set temperature within the minimum outdoor temperature range of -14.0~$-0.6^{\circ}C$ was 135,930~307,150 kcal, and the range was within the 9,610~$19,630kcal{\cdot}h^{-1}$ per hour. This demonstrated that about 23~53% heating energy of the maximum heating load could be supplied. Total radiating value and amount of energy consumed were 2,548,306 kcal and 3,075.7 kWh, respectively. When heating takes place using oil, which is a fossil fuel, the total amount of light oil consumed was 281.6 L while the cost was 321,000 won. When the electricity cost for farms is applied, the total cost was about 110,730 won, which is about 33.5% of the cost required compared to oil consumption. The temperature at in the experiment area was about 8.3~$14.6^{\circ}C$ higher compared to that of the control area.

Application of LCA Methodology on Lettuce Cropping Systems in Protected Cultivation (시설재배 상추에 대한 전과정평가 (LCA) 방법론 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.705-715
    • /
    • 2010
  • The adoption of carbon foot print system is being activated mostly in the developed countries as one of the long-term response towards tightened up regulations and standards on carbon emission in the agricultural sector. The Korean Ministry of Environment excluded the primary agricultural products from the carbon foot print system due to lack of LCI (life cycle inventory) database in agriculture. Therefore, the research on and establishment of LCI database in the agriculture for adoption of carbon foot print system is urgent. Development of LCA (life cycle assessment) methodology for application of LCA to agricultural environment in Korea is also very important. Application of LCA methodology to agricultural environment in Korea is an early stage. Therefore, this study was carried out to find out the effect of lettuce cultivation on agricultural environment by establishing LCA methodology. Data collection of agricultural input and output for establishing LCI was carried out by collecting statistical data and documents on income from agro and livestock products prepared by RDA. LCA methodology for agriculture was reviewed by investigating LCA methodology and LCA applications of foreign countries. Results based on 1 kg of lettuce production showed that inputs including N, P, organic fertilizers, compound fertilizers and crop protectants were the main sources of major emission factor during lettuce cropping process. The amount of inputs considering the amount of active ingredients was required to estimate the actual quantity of the inputs used. Major emissions due to agricultural activities were $N_2O$ (emission to air) and ${NO_3}^-$/${PO_4}^-$ (emission to water) from fertilizers, organic compounds from pesticides and air pollutants from fossil fuel combustion in using agricultural machines. The softwares for LCIA (life cycle impact assessment) and LCA used in Korea are 'PASS' and 'TOTAL' which have been developed by the Ministry of Knowledge Economy and the Ministry of Environment. However, the models used for the softwares are the ones developed in foreign countries. In the future, development of models and optimization of factors for characterization, normalization and weighting suitable to Korean agricultural environment need to be done for more precise LCA analysis in the agricultural area.

Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites (Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가)

  • Shin, Hyo-Won;Hwang, June-Hyeon;Kim, Eun-A;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2021
  • Material Life Cycle Assessment (MLCA) was performed to analyze the environmental impact characteristics of the Mg2NiHx-5 wt% CaO hydrogen storage composites' manufacturing process. The MLCA was carried out by Gabi software. It was based on Eco-Indicator 99' (EI99) and CML 2001 methodology. The Mg2NiHx-5 wt% CaO composites were synthesized by Hydrogen Induced Mechanical Alloying (HIMA). The metallurgical, thermochemical characteristics of the composites were analyzed by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), specific surface area analysis (Bruner-Emmett-Teller, BET), and thermogravimetric analysis (TGA). As a result of the CML 2001 methodology, the environmental impact was 78% for Global Warming Potential (GWP) and 22% for Eutrophication Potential (ETP). In addition, as a result of applying the EI 99' methodology, the acidification was the highest at 43%, and the ecotoxicity was 31%. Accordingly, the amount of electricity used in the manufacturing process may have an absolute effect on environmental pollution. Also, it is judged that the leading cause of Mg2NiHx-5 wt% CaO is the addition of CaO. Ultimately, it is necessary to research environmental factors by optimizing the process, shortening the manufacturing process time, and exploring eco-friendly alternative materials.

Comparative analysis on range of application of technology convergence as a means of technological innovation (기술혁신 수단으로써 기술융합 이론의 적용 범위에 대한 비교 연구)

  • Choi, Hyukjoon;Lee, Youah
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.142-142
    • /
    • 2010
  • 일반적으로 기술융합이라는 용어는 IT, BT, NT 등 성격이 다른 큰 범주에서 기술간의 결합으로 인식되고 있다. 현재까지의 기술융합 연구들은 IT기술을 중심으로 한 융합과 관련 국가 정책에 관한 것이 대부분을 차지하고 있어 큰 기술 범주 위주에 국한되어 있다. 하지만 동일한 목적을 위해 수행하는 유사 기술영영에서의 기술융합 역시 기술혁신의 수단으로 간과할 수 없는 영역이다. 실제로 미국, 유럽 등의 선진국에서는 기술융합 전담기관을 신설하여 프로젝트 내의 기술간 융합에 관심을 갖고 있지만, 국내에서는 프로젝트 범위의 기술융합 가능성 및 실효성에 대한 연구가 부족한 실정이다. 이에 본 연구에서는 지식경제부에서 수행하는 가스하이드레이트 연구개발사업을 실증사례로 하여 프로젝트 범위의 기술 융합에 관하여 기술융합의 필요성, 적용가능성, 실효성에 초점을 맞추어 고찰하였다. 가스하이드레이트 개발 사업은 지식경제부 내 가스하이드레이트 개발사업단 주관으로 2005년에 시작되었으며 2014년까지 I 지역 탐사 및 시추, II 지역 탐사 및 시추, 시험생산의 3단계의 달성목표를 가지고 있다. 가스하이드레이트는 천연가스가 저온 고압 상태에서 물과 결합해 형성된 고체 에너지로 화석연료 고갈에 따라 이를 대체할 가장 유력한 청정에너지원으로 주목받고 있다. 현재 가스하이드레이트 개발사업단에서는 지구물리탐사분야 지질지화학분야 개발생산분야로 세부 기술모듈을 형성하여 목표달성을 위해 노력하고 있지만, 중과제간 교류가 부족한 상황으로 인해 목표달성을 위한 기술력의 확보 및 향후 상업생산에 대한 불확실성이 증가하고 있는 상황이다. 이와 같은 상황을 해결하기 위해서 기술개발 및 혁신의 수단인 기술융합의 필요성이 증가하고 있다. 기술혁신은 기초연구, 응용연구, 개발, 학습, 투자 등의 일련의 과정을 거쳐 경제적 성과와 사회적 영향을 만들어내는 개념으로 정의 할 수 있다. 기술혁신을 이루어내는 가장 중심적인 역할을 담당하는 기술융합은 2개 이상의 요소기술들이 결합하여 기술이 갖지 않는 새로운 기능을 발휘하는 기술혁신의 한 현상으로 정의할 수 있다. 기술융합은 21세기 초에 접어들어 급속하게 변화하는 양상을 보이며 예상보다 경제에 더 큰 영향을 미치고 있다. 가스하이드레이트 각 단계에서의 애로점을 극복하기 위한 기술혁신을 위해 지구물리탐사 지질지화학 개발생산분야간의 융합의 가능성 등을 타진해본 결과, 각 기술융합들을 기술융합 유형에 맞춰 분류할 수 있었으며 유형별 적용가능성과 기대효과 측면에서 비교분석을 수행하였다. 분석의 정밀도를 높이기 위하여 기술융합 유형에 대한 이론과 실제 가스하이드레이트 전문가들과의 설문을 통해 비교분석을 실시하였다. 가스하이드레이트 실증 사례에 대한 분석 결과, 기술융합 이론은 기존의 큰 기술범주뿐만 아니라 작은 범주에도 적용할 수 있으며, 필요성과 적용가능성, 실효성 면에서도 충분한 고찰을 통해 기술융합 이론의 적용 범위를 좁히면 더 많은 연구와 융합기술을 얻을 수 있다는 결론을 얻을 수 있다.

  • PDF

Characterization of Bio-oils Produced by Fluidized Bed Type Fast Pyrolysis of Woody Biomass (목질바이오매스의 급속열분해에 의해 생성된 바이오오일의 특성 분석)

  • Choi, Joon-Weon;Choi, Don-Ha;Cho, Tae-Su;Meier, Dietrich
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.36-43
    • /
    • 2006
  • Using fluidized bed type fast pyrolysis system (capacity 400 g/h) bio-oils were produced from beech (Fagus sylvatica) and softwood mixture (spruce and larch, 50:50). The pyrolysis was performed for 1~2 s at the temperature of $470{\pm}5^{\circ}C$. Pyrolysis products consisted of liquid form of bio-oil, char and gases. In beech wood bio-oil was formed to ca. 60% based on dry biomass weight and the yield of bio-oil was 49% in soft wood mixture. The moisture contents in both bio-oils were ranged between 17% and 22% and the bio-oil's density was measured to $1.2kg/{\ell}$. Bio-oils were composed of 45% carbon, 47% oxygen, 7% hydrogen and lower than 1% nitrogen,which was very similar to those of original biomass. In comparison with oils from fossil resources, oxygen content was very high in bio-oils, while no sulfur was found. More than 90 low molecular weight components, classified to aromatic and non aromatic compounds, were identified in bio-oils by gas chromatographic analysis, which amounted to 31~33% based on the dry weight of bio-oils.

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.

Cellulosic Ethanol as Renewable Alternative Fuel (신재생 대안 에너지로서의 셀룰로스 에탄올)

  • Cho, Woo-Suk;Chung, Yu-Hee;Kim, Bo-Kyung;Suh, Su-Jeoung;Koh, Wan-Soo;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • Global warming crisis due primarily to continued green house gas emission requires impending change to renewable alternative energy than continuously depending on exhausting fossil fuels. Bioenergy including biodiesel and bioethanol are considered good alternatives because of their renewable and sustainable nature. Bioethanol is currently being produced by using sucrose from sugar beet, grain starches or lignocellulosic biomass as sources of ethanol fermentation. However, grain production requires significant amount of fossil fuel inputs during agricultural practices, which means less competitive in reducing the level of green house gas emission. By contrast, cellulosic bioethanol can use naturally-growing, not-for-food biomass as a source of ethanol fermentation. In this respect, cellulosic ethanol than grain starch ethanol is considered a more appropriate as a alternative renewable energy. However, commercialization of cellulosic ethanol depends heavily on technology development. Processes such as securing enough biomass optimized for economic processing, pretreatment technology for better access of polymer-hydrolyzing enzymes, saccharification of recalcitrant lignocellulosic materials, and simultaneous fermentation of different sugars including 6-carbon glucose as well as 5-carbon xylose or arabinose waits for greater improvement in technologies. Although it seems to be a long way to go until commercialization, it should broadly benefit farmers with novel source of income, environment with greener and reduced level of global warming, and national economy with increased energy security. Mission-oriented strategies for cellulosic ethanol development participated by government funding agency and different disciplines of sciences and technologies should certainly open up a new era of renewable energy.