DOI QR코드

DOI QR Code

Evaluation of Greenhouse Gas Emissions for Life Cycle of Mixed Construction Waste Treatment Routes

혼합 건설폐기물 처리경로별 전과정 온실가스 발생량 평가

  • Kim, Da-Yeon (Program in Global Industrial & Environmental Technology Convergence, Inha University) ;
  • Hwang, Yong-Woo (Department of Environmental Engineering, Inha University) ;
  • Kang, Hong-Yoon (Program in Global Industrial & Environmental Technology Convergence, Inha University) ;
  • Moon, Jin-Young (Program in Global Industrial & Environmental Technology Convergence, Inha University)
  • 김다연 (인하대학교 글로벌산업.환경융합전공) ;
  • 황용우 (인하대학교 환경공학과) ;
  • 강홍윤 (인하대학교 글로벌산업.환경융합전공) ;
  • 문진영 (인하대학교 글로벌산업.환경융합전공)
  • Received : 2021.12.17
  • Accepted : 2022.01.04
  • Published : 2022.02.28

Abstract

Construction waste is generated at a rate of approximately 221,102 tons/day in Korea. In particular, mixed construction waste generates approximately 24,582 tons/day. The other components were recycled by 98.9%. The amount of greenhouse gas emissions from the waste was 17.1 million tons of CO2 equaling 2.3% of the total greenhouse gas emissions. To reduce greenhouse gas emissions, reducing the environmental impact is becoming increasingly important. However, appropriate treatment must first be established, as mixed construction waste is also increasing. Thus, an effective plan is urgently needed because it is frequently segregated and sorted by the landfill and incinerated. In addition, there is an urgent need to prepare various effective recycling methods rather than a simple treatment. Therefore, this study analyzed the environmental impact of the treatment of mixed construction waste by calculating greenhouse gas emissions. As a result, the highest greenhouse gas generation occurred during the incineration stage. Moreover, the optimal method to reduce greenhouse gas emissions is recycling and energy recovery from waste. In addition, the amount of greenhouse gas generated during energy recovery from the waste stage was the second highest. However, greenhouse gas emissions can be reduced by using waste as energy to reduce fossil fuel consumption. In addition, for the transportation stage, the optimal reduction plan is to minimize the amount of greenhouse gas emissions by setting the optimal distance and applying biofuel and electric vehicle operations.

우리나라는 2019년 221,102 ton/day의 건설폐기물이 발생하였으며, 그 중, 본 연구의 대상인 혼합 건설폐기물 발생량은 24,582 ton/day로 조사되었다. 나머지 건설폐기물은 98.9%의 상당히 높은 수준으로 재활용되고 있다. 폐기물 부문의 온실가스 배출량은 17.1 백만 ton CO2-eq.로 총발생량의 2.3% 정도를 차지한다. 온실가스 배출을 감축하기 위해 환경영향 저감 방법 등에 관한 관심이 점차 증대되고 있으나, 혼합 건설폐기물의 발생량은 현재까지 지속적으로 증가하고 있어 이에 대한 적절한 처리가 필요할 것으로 판단된다. 또한, 분리·선별이 어려워 매립 및 소각에 의해 처리하는 경우가 대부분이며, 단순처리보다 재활용을 위한 효율적인 방안 마련이 시급한 실정이다. 따라서, 본 연구에서는 혼합 건설폐기물의 처리경로별 온실가스 배출량 산출을 통해 환경영향을 검토하였다. 그 결과, 온실가스 발생량이 가장 높은 것은 소각단계로 나타났으며, 최적의 온실가스 저감 방안은 단순 소각처리가 아닌 재활용, 에너지회수를 통한 재활용 처리가 최적의 방안이라고 판단된다. 또한, 에너지화 단계의 온실가스 발생량은 두 번째로 높게 발생하는 것으로 나타났다. 그러나 폐기물을 에너지로 활용하여 화석연료 사용 절감을 통해 온실가스 배출량을 감축시킬 수 있다고 판단된다. 수송단계에서는 최적의 거리 설정과 바이오연료 및 전기자동차 운행 등을 적용하여 온실가스 발생량을 최소화하는 것이 최적의 방안이라고 판단된다.

Keywords

Acknowledgement

본 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0008421, 2021년 산업전문인력역량강화사업).

References

  1. Ministry of Environment, National Waste Generation and Treatment Status, https://www.recycling-info.or.kr/rrs/main.do, December 31, 2020.
  2. Greenhouse Gas Information Center, 2020 : 2020 National Greenhouse Gas Inventory Report of Korea, pp. 6-7, Greenhouse Gas Inventory and Research Center, Ministry of Environment, http://www.gir.go.kr/home/main.do
  3. J. S. Park, H. S. Lee, 2010 : A Study on the Utilization of Combustible Construction Waste as Fuel, J.RCR, 5(2), pp.116-123.
  4. Korea Ministry of Government Legislation, Guidelines for the treatment of construction waste, https://www.law.go.kr/LSW/main.html, January 5, 2021.
  5. W. Y. Choi, 2020 : Construction Waste Recycling Promotion Act Revision, J.RCR, 15(2), pp.6-10.
  6. K. W. Cha, 2011 : A Study on the Calculation of CO2 Emissions and Environmental Cost according to Construction Waste Types on the basis of LCA, Kyungpook National University, Master's thesis.
  7. Yuehuan S, Huabo D., Zinuo W., et al., 2020 : Characterizing the environmental impact of packaging materials for express delivery via life cycle assessment, J. Clean. Prod, 274, pp.122961. https://doi.org/10.1016/j.jclepro.2020.122961
  8. Seyed H. G., Matthew B., Nuhu B., 2020 : Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery, J. Clean. Prod, 224, pp.118710.
  9. C. B. Park, 2017 : Alternative energy effectiveness analysis of the combustible waste into fuel, Ajou University, Master's thesis.
  10. J. S. Park, S. H. Lee, 2009 : A Study on the Promotion of Combustible Construction Waste Recycling, RCR, 4(1), pp.89-95.
  11. K. W. Cha, W. H. Hong, J. H. Kim, 2017 : A Study on CO2 Emission in End-of-Life Phase by Detached House Type, Journal of the Architectural Institute of Korea Structure & Construction, 33(3), pp.51-59. https://doi.org/10.5659/JAIK_SC.2017.33.3.51
  12. Joint Research Centre - European Commission, Best Environmental Management Practice in the Building and Construction Sector, Final Draft, https://ec.europa.eu, October 20, 2021.
  13. Helena D., John B., Katja L., et al., 2015 : Construction and demolition waste management - a holistic evaluation of environmental performance, J. Clean. Prod, 107(1), pp. 333-341. https://doi.org/10.1016/j.jclepro.2015.02.073
  14. Jian Z., Zhen Yu Z., 2014 : Green building research-current status and future agenda: a review, RSER, 30, pp.271-281.
  15. T. H. Song, J. U. Seong, 2017 : Comparison of the Construction Waste Generated by the Project and the Estimation of the Waste Generation Unit, J.RCR, 5(4), pp.427-434.
  16. H. S. Lee, 2002 : The Estimation of Energy Consumption and Carbon Dioxide Generation during the Building Demolition Process, Chung-Ang University, Master's thesis.
  17. IPCC, 2006 : Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2-5, Eggleston H.S., Buendia L., Miwa K., et al., IGES, https://www.ipcc.ch/
  18. Sudokwon Landfill Site Management Corporation, Waste Disposal, https://www.slc.or.kr/main.do, March 24, 2021.
  19. H. S. Moon, S. W. Lee, K. Y. Kim, et al., 2018 : A Study on the Characteristics for Energy Recovery and Possibility of Landfill Control of Combustible Industrial Wastes Disposed into Landfill Sites, KSUE, 18(3), pp.339-349.
  20. Chan, J.T.K, Leung, H.M, Yue, P.Y.K., et al., 2017 : Combined effects of land reclamation, channel dredging upon the bioavailable concentration of polycyclic aromatic hydrocarbons (PAHs) in Victoria Harbour sediment, Hong Kong, Mar Pollut Bull, 114(1), pp.587-591. https://doi.org/10.1016/j.marpolbul.2016.09.017
  21. Md. Uzzal H., Chi Sun P., 2018 : Comparative LCA of wood waste management strategies generated from building construction activities, J. Clean. Prod, 177, pp.387-397. https://doi.org/10.1016/j.jclepro.2017.12.233
  22. M. H. Kim, S. Y. Hong, C. G. Phae, et al., 2012 : Analysis of environmental benefit of wood waste recycling processes, J.KORRA, 20(2), pp.15-19.
  23. W. J. Kim, 2002 : Environmental assessment for the recycling of w aste concrete using life cycle assessment method, University of Seoul, Master's thesis.
  24. E. M. Jang, Y. S. Cho, 2013 : The Economic Analysis of A Solid Refuse Fuel (SRF) Project in the Urban Area, JCCR, 4(3), pp.245-254.
  25. Zehai H., Yunxiang L., Cong W., 2018 : Influence of construction and demolition waste on fitness and community structure of cicada nymphs: New bioindicators of soil pollution, PLOS, 13(9), pp.e0203744-e0203744. https://doi.org/10.1371/journal.pone.0203744