• Title/Summary/Keyword: 홍정하

Search Result 62, Processing Time 0.02 seconds

Liu Yi and Hong Jung Ha's Kai Fang Shu (유익(劉益)과 홍정하(洪正夏)의 개방술(開方術))

  • Hong, Sung-Sa;Hong, Young-Hee;Kim, Young-Wook
    • Journal for History of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • In Tian mu bi lei cheng chu jie fa(田畝比類乘除捷法) of Yang Hui suan fa(楊輝算法)), Yang Hui annotated detailed comments on the method to find roots of quadratic equations given by Liu Yi in his Yi gu gen yuan(議古根源) which gave a great influence on Chosun Mathematics. In this paper, we show that 'Zeng cheng kai fang fa'(增乘開方法) evolved from a process of binomial expansions of $(y+{\alpha})^n$ which is independent from the synthetic divisions. We also show that extending the results given by Liu Yi-Yang Hui and those in Suan xue qi meng(算學啓蒙), Chosun mathematican Hong Jung Ha(洪正夏) elucidated perfectly the 'Zeng cheng kai fang fa' as the present synthetic divisions in his Gu il jib(九一集).

Mathematics of Chosun Dynasty and $Sh\grave{u}\;l\breve{i}\;j\bar{i}ng\;y\grave{u}n$ (數理精蘊) (조선(朝鮮) 산학(算學)과 수리정온(數理精蘊))

  • Hong Young-Hee
    • Journal for History of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.25-46
    • /
    • 2006
  • We investigate the process of western mathematics into Chosun and its influences. Its initial and middle stages are examined by Choi Suk Jung(崔錫鼎, $1645\sim1715$)'s Gu Su Ryak(九數略), Hong Jung Ha(洪正夏, $1684\sim?$)'s Gu Il Jib(九一集) and Hwang Yun Suk(黃胤錫, $1719\sim1791$)'s I Su Shin Pyun(理藪新編), Hong Dae Yong(洪大容, $1731\sim1781$)'s Ju Hae Su Yong(籌解需用), respectively. Western mathematics was transmitted for the study of the Shi xian li(時憲曆) when it was introduced in Chosun. We also analyze Su Ri Jung On Bo Hae(數理精蘊補解, 1730?) whose author studied $Sh\grave{u}\;l\breve{i}\;j\bar{i}ng\;y\grave{u}n$ most thoroughly, in particular for astronomy, and finally Lee Sang Hyuk(李尙爀, $1810\sim?$), Nam Byung Gil(南秉吉, $1820\sim1869$) who studied together structurally western mathematics.

  • PDF

Areas in MukSaJibSanBeob and GuIlJib (묵사집산법(默思集算法)과 구일집(九一集)에서의 넓이)

  • Khang, Mee Kyung
    • Journal for History of Mathematics
    • /
    • v.27 no.4
    • /
    • pp.259-269
    • /
    • 2014
  • In China and Joseon, the measurement of the areas of various plane figures is a very important subject for mathematical officials because it is connected directly with tax problems. Most of mathematical texts in China and Joseon contained Chinese character '田', which means a field for farming, in title name for parts that dealt with problems of areas and treated as areas of plane figures. The form of mathematical texts in Joseon is identical with those in China because mathematicians in Joseon referred to texts in China. Gyeong SeonJing and Hong JeongHa also referred to Chinese texts. But they added their interpretations or investigated new methods for the measurement of areas. In this paper, we investigate the history of the measurement of areas in Joseon, which described in two books MukSaJibSanBeob and GuIlJib, with comparing some mathematical texts in China.

Trends in Edge Computing Technology (엣지 컴퓨팅 기술 동향)

  • Hong, J.H.;Lee, K.C.;Lee, S.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.6
    • /
    • pp.78-87
    • /
    • 2020
  • With the evolution of the Internet of Things (IoT), a computing paradigm shift from cloud to edge computing is rapidly taking place to effectively manage the rapidly increasing volume of data generated by various IoT devices. Edge computing is computing that occurs at or near the physical location of a user or data source. Placing computing services closer to these locations allows users to benefit from faster and more reliable services, and enterprises can take advantage of the flexibility of hybrid cloud computing. This paper describes the concept and main benefits of edge computing and presents the trends and future prospects for edge computing technology.

Mathematical Structures of Joseon mathematician Hong JeongHa (조선(朝鮮) 산학자(算學者) 홍정하(洪正夏)의 수학적(數學的) 구조(構造))

  • Hong, Sung Sa;Hong, Young Hee;Lee, Seung On
    • Journal for History of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • From the mid 17th century, Joseon mathematics had a new beginning and developed along two directions, namely the traditional mathematics and one influenced by western mathematics. A great Joseon mathematician if not the greatest, Hong JeongHa was able to complete the Song-Yuan mathematics in his book GuIlJib based on his studies of merely Suanxue Qimeng, YangHui Suanfa and Suanfa Tongzong. Although Hong JeongHa did not deal with the systems of equations of higher degrees and general systems of linear congruences, he had the more advanced theories of right triangles and equations together with the number theory. The purpose of this paper is to show that Hong was able to realize the completion through his perfect understanding of mathematical structures.

한국어 피동형의 전산적 구현

  • 홍정하
    • Language and Information
    • /
    • v.4 no.1
    • /
    • pp.130-140
    • /
    • 2000
  • 이 논문에서는 피동접사 '이, 히, 리, 기'와 결합하는 피동형과 관련된 형태·통사적 문제를 전산적 관점에서 다룬다. 전산처리에서 이러한 피동형의 형태적 문제는 다음과 같다. 첫째, 피동접사 '이, 히, 리, 기'와 결합할 수 있는 타동사 어간의 분포가 제한되어 있다. 둘째, 타동사 어간이 결합할 수 있는 피동접사는 고정접사는 고정되어 있다. 셋째, 피동형 중에 타동사 어간과 피동접사가 결합할 대 형태적으로 변화하는 것들이 있다. '나누다/나뉘다, 모으다/모이다, 잠그다/잠기다, 자르다/잘리다'등이 여기에 해당된다. 이러한 형태적 문제 외에도 전산처리에서 피동형과 관련된 통사적 문제는 다음과 같다. 첫째, 능동형의 타동사가 피동형이 되면서 논항구조도 함께 변화한다. 둘째, 피동문의 행동주가 문장에서 생략되는 경우가 종종 있다. '문제가 쉽게 풀리었다','소리가 잘 들린다'등이 이에 해당된다. 이 논문은 한국어 피동접사 '이, 히, 라, 기'와 결합하는 피동형의 형태·통사적 특징을 전산적으로 처리하는 것이 목적이다. 이를 위해 표상모형으로는 자질구조를, 구현도구로는 Malage를 사용한다.

  • PDF

Benford's Law in Linguistic Texts: Its Principle and Applications (언어 텍스트에 나타나는 벤포드 법칙: 원리와 응용)

  • Hong, Jung-Ha
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.145-163
    • /
    • 2010
  • This paper aims to propose that Benford's Law, non-uniform distribution of the leading digits in lists of numbers from many real-life sources, also appears in linguistic texts. The first digits in the frequency lists of morphemes from Sejong Morphologically Analyzed Corpora represent non-uniform distribution following Benford's Law, but showing complexity of numerical sources from complex systems like earthquakes. Benford's Law in texts is a principle reflecting regular distribution of low-frequency linguistic types, called LNRE(large number of rare events), and governing texts, corpora, or sample texts relatively independent of text sizes and the number of types. Although texts share a similar distribution pattern by Benford's Law, we can investigate non-uniform distribution slightly varied from text to text that provides useful applications to evaluate randomness of texts distribution focused on low-frequency types.

  • PDF

Processing Korean Passives for Database Semantics (데이터베이스 의미론을 위한 한국어 피동형의 전산적 처리)

  • 홍정하;최승철;이기용
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.411-418
    • /
    • 2000
  • Hausser (1999)와 이기용 (1999a, 1999c)에서는 데이터베이스 관리 시스템(DBMS)을 이용하여 자연언어의 의미를 다루는 데이터베이스 의미론을 제안하였다. 특히 이기용 (1999c)에서는 수형도(tree), 논리 형태(logical fomulas), 자질 구조(feature structure)와 같은 다양한 언어 표상 형식들을 관계형 데이터베이스 관리 시스템(DBMS)의 표상 형식인 테이블 형식으로 전환 가능함을 보임으로써 데이터베이스 의미론에 관계형 데이터베이스 관리 시스템을 도입할 수 있음을 제시하였다. 한편, Lee (2000)에서 제시한 데이터베이스 의미론 모형에서는 데이터베이스 관리 시스템과 사용자(end-user)를 연결하는 언어 정보 처리 시스템(LIPS; Linguistic Information Processing System)을 제안하였다. 이 언어 정보 처리 시스템은 사용자에 의해 입력된 언어 자료를 처리하여 그 분석 결과를 데이터베이스 관리 시스템에 전달하고, 이를 통해 구축된 데이터베이스에서 추출한 정보를 다시 사용자에게 전달하는 시스템이다. 이 논문은 한국어 '이, 히, 리, 기' 피동형을 전산처리 할 수 있도록, 데이터베이스 의미론에서 핵심 요소인 언어정보 처리 시스템과 데이터베이스 관리 시스템을 구현하는 것이 목적이다.

  • PDF

Volumes of Solids in Joseon Mathematics (조선(朝鮮) 산학(算學)과 체적(體積))

  • Hong, Sung Sa;Hong, Young Hee;Kim, Chang Il
    • Journal for History of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.101-110
    • /
    • 2014
  • Joseon is mainly an agricultural country and its main source of national revenue is the farmland tax. Since the beginning of the Joseon dynasty, the assessment and taxation of agricultural land became one of the most important subjects in the national administration. Consequently, the measurement of fields, or the area of various plane figures and curved surfaces is a very much important topic for mathematical officials. Consequently Joseon mathematicians were concerned about the volumes of solids more for those of granaries than those of earthworks. The area and volume together with surveying have been main geometrical subjects in Joseon mathematics as well. In this paper we discuss the history of volumes of solids in Joseon mathematics and the influences of Chinese mathematics on the subject.