• Title/Summary/Keyword: 혼합 폐플라스틱

Search Result 45, Processing Time 0.027 seconds

A Study on the manufactue and the quality of RPF. (폐플라스틱 재활용 고형연료(RPF)의 제조 및 특성 연구-1)

  • Han, Doo-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.593-595
    • /
    • 2006
  • 고유가 시대를 맞이하여 석유류를 대체할 연료의 필요성이 대두되고 있다. 한편 석유로부터 나오는 농가의 폐비닐이나, 산업폐기물 중 가전제품 및 산업용 폐플라스틱의 증가로 재활용에 대한 요구가 증대되고 있다. 일본 등에서는 이미 RPF를 연료로 사용하는 것이 보편화 되고 있어, 사람이 섭취하는 다이옥신의 98%는 음식, 1.5%는 대기 중에서 섭취하며, 소각장치에서 다이옥신류의 생성 억제 및 제거 기술은 이미 많이 확보되어 있다. RPF를 효과적으로 생산하고 열병합 발전소, 대형 보일러 시설, 작게는 농가의 대형 비닐하우스 등에 사용하기 위한 체계적인 연구가 필요하며, 본 논문에서는 W 기업의 플랜트 설비를 이용하여 폐플라스틱에 음식물류폐기물을 혼합한 RPF의 제조 및 연소특성을 중심으로 고찰하였다.

  • PDF

Development for the Waste Plastics Process (폐플라스틱의 재활용 기술)

  • 여종기
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.22-28
    • /
    • 1997
  • In recent yean thc problem of wastc plastics arc greatly incrcascd with ihe result uf lndushial growth. As a rcsult the amount of wastc plaslics in domestic area is appraxhnately 2,300,000 t<~nin 1996 base and contmuously increasing more than 12% cvcry ycar. Thc disposal way of these waste plastics arc dlLl malnly rely~ng on landill1 or partially incinuralion So that it hss become a senous social problem due to the second envirnmentd pollution. The tcchnologics iar prducing oil from the waste plastics have hccn dcvelopcd far along pennd and currently some of them are in a commercialiration stage Pyrolysis process in one of the major process m heating waslc plaslics bul still has some restlichons for the cammcrc~dizatian duc lo 11s emnom~cal problems assaciated with a systcmiltlc lecd collcctionidispnsJ ways. Cansldenng cnvaomcnld problems, thc inclease m the charge for waste matcds trcatmcnt and thc lmlitarion ni disposal area, it is inteicstcd that the wastc plastics treabncnt by pyrolysn. which would be the safest and the most eilic~ent process for cnnvcrting fecd wastc to rc-usablc rcsourccs. would he predomhant m ihe near h~lurc Thc shldy aims inr the development of haslc ted~nolagy for scaling up to a com~nercial sire through pyrolys~s process which is cnnduclcd under the absence of air. Furthern~orc the waste plastics can be recycled as iual gas or oil wilhout harmful effects in enviroment, The waste w e d plastics arc pyrolyzed in (he fluidized bcd rcaclor under continuous way and thc ail ylcld gives approx~marcly 47 4%.

  • PDF

Development of Triboelectrostatic Separation Technique for Material Separation of EVA & PET Mixture Plastic Wastes (EVA와 PET 혼합(混合) 폐플라스틱의 재질분리(材質分離)를 위한 마찰하전형(摩擦荷電形) 정전선별(靜電選別) 기술개발(技術開發))

  • Jeon, Ho-Seok;Park, Chul-Hyun;Baek, Sang-Ho;Kim, Byoung-Gon;Kim, Hyung-Seok
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2009
  • A research on material separation of EVA and PET mixture plastic waste using a triboelectrostatic separator has been carried out. It was found that PP was the best charging material to give the highest charge on the surface of EVA and PET mixture plastics with an opposite polarity. Therefore, a charger of pipe line type using PP material was manufactured for separation of EVA and PET mixture plastic waste. At optimum test conditions that used PP cyclone charger developed in this study, we could separate out PET with a glade of 98.7% and a recovery of 89.7%.

Injection moldable material utilizing shell waste and recycled polyethylene (貝角 廢棄物과 混合 廢플라스틱을 이용한 射出用 素材에 대한 硏究)

  • Chong, Mie-Hwa;Chung, Yong-Chan;Chun, Byoung-Chul;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.55-62
    • /
    • 2005
  • Mechanical properties of shell powder containing mixed recycled plastics were investigated depending on the shell content and surface modification. First, shell powder and LDPE were compounded using the twin screw extruder to manufacture 40 wt% master batch(M/B), and the M/B was blended with LDPE to produce bulk specimens with 10, 20, 30 and 40 wt% shell content. To improve the compatibility of shell powder with mixed recycled plastics matrix, surface of shell powder was chemically modified with cations or cationic surfactant. Surface modified shell was also used to prepare bulk specimens with the same shell content. Mechanical property analysis showed obvious improvement for the surface modified shell containing bulk specimens compared to unmodified ones. These results can lead to the development of new applications for the mixed recycled plastics.

Research Trends in Flotation of Waste-plastics and Its Use as Functional Materials (폐플라스틱의 부유선별 및 기능성 소재로의 활용 연구동향)

  • Han, Yosep;Kim, Rina;Hong, Hye-Jin;Park, In-Su;Kim, Dong-Gyun;Kim, Yun Ho;Jeon, Ho-Seok;Chang, Hankwon
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.15-26
    • /
    • 2020
  • In recent years, there is an increasing interest in environmental friendly treatment of waste-plastics in terms of the generation of microplastics. Accordingly, the recycling of waste-plastics is very important because it provides advantages of volume reduction, mitigation of carbon dioxide emission, and reproduction of value-added products. In particular, in order to recycle the eco-friendly waste-plastics, it is necessary to use a physical separation methods, and among them, flotation separation, which can separate material (i.e., polymer component) in waste-plastics is well known as a very effective separation method in terms of material recycle. Therefore, in this review, the research trend of flotation separation for effective separation of mixture waste-plastics was investigated. In addition, through the reported research results, approaches to use as new functional materials from polymers, which are raw materials for waste-plastics, are summarized.

Separation of Mixed Plastics using the Drum type Tribo-Electrostatic Separation Process (드럼형 마찰대전장치를 이용한 혼합플라스틱의 정전선별)

  • Kim Do Kyun;Cho Hee Chan;Jeon Ho Seok
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.39-46
    • /
    • 2004
  • Triboelectrostatic separation process is a technology that different particles charged after contact and rubbing different materials are separated in a high electric field. This technology has an advantage in that it can be used for separating non-conducting materials such as plastics unlike other electrostatic separation processes. There are two objectives in this study. One is to develop an effective continuous tribo-electrostatic separation process. The other is to apply the developed device for the separation of mixed plastics. Results show that almost all tested plastics reaches over 95% in yield and grade after separation.

Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가)

  • Phae Chae-Gun;Kim Young-shin;Jo Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.159-166
    • /
    • 2005
  • In Korea, although the generation of waste plastic has been increasing, the rate of recycling is considerably low and moreover, there is no suitable method for the treatment of waste plastics. However, pyrolysis, which is appropriate for the treatment of highly polymerized compounds, such as plastics, has recently gained much interest. In this study, a property of the products from the pyrolysis of mixed waste plastics, with a possible practical use for the recycling oil produced, were assessed. First of all, in order to investigate the pyrolysis characteristic of waste plastics, TGA (Thermogravimetric analysis) and DCS (Differential Scanning Calorimetry) were performed on a number of different plastics, including PP, LDPE, HDPE, PET and PS, as well as others. According to the result, it appeared that PP was the most efficiently pyrolyzed by changing the temperature, followed by LDPE, HDPE, PET, PS and the other plastics, in that order. From the results, the optimum conditions f3r pyrolysis were set up, and the different waste plastics pyrolyzed. The recycling oil produced from the flammable gases generated during the pyrolysis was com-pared with fuel oil by an analysis using the petroleum quality inspection method on KS(Korea industrial Standard). The results of the analysis showed the recycling oil was of a similar standard to fuel oil, with the exception of the ignition point, with a quality somewhere between that of paraffin oil and diesel fuel. With respect to these results, the quality of the recycling oil produced by the pyrolysis of waste plastics was suf-ficient for use as fuel oil.