• Title/Summary/Keyword: 헬리컬 파일

Search Result 16, Processing Time 0.031 seconds

Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : I. Test-bed Construction and Field Loading Test (중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : I. 시험시공과 현장재하시험)

  • Lee, Jongwon;Lee, Dongseop;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.31-39
    • /
    • 2014
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. The advantages of helical piles are no need for boring or grout process, and ability to install with relatively light devices. The bearing capacity of the helical pile is exerted by integrating the bearing capacity of each helix plate attached to the steel shaft. In this paper, to estimate the bearing capacity of moderate-size helical piles, 6 types of helical piles were constructed with different shaft diameter, plate configuration and the penetration depth. A series of field loading tests was performed to evaluate the effect of helical pile configuration on the bearing capacity of helical pile, constructed in two different shaft diameters (i.e. 73 mm and 114 mm). In the same way, the diameter of bearing plate was also changed from 400mm to 250mm with one or three plates. As well, the penetration depth was varied from 3m to 6m to analyze the relation between the penetration depth and the bearing capacity. As a result, not only the increase of the shaft diameter, but also the number or diameter of helix bearing plates enhances the bearing capacity. Especially the configuration of the helix plate is more critical than the shaft diameter.

Optimization for Configuration and Material Cost of Helical Pile Using Harmony Search Algorithm (하모니서치 알고리즘을 이용한 헬리컬 파일의 형상 및 재료비 최적 설계기법에 대한 연구)

  • Na, Kyunguk;Lee, Dongseop;Lee, Hyungi;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.377-386
    • /
    • 2015
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. Advantages of the helical pile are no need for boring or grout process, and ability to install a pile foundation with relatively light devices. In this study, an optimized design method for helical piles is proposed to minimize the material cost with consideration of the load bearing capacity obtained by the cylindrical shear method. The harmony search meta-heuristic algorithm was adopted for optimization process. The optimized design was verified by comparing with the 2009 International building code. It is noted that the optimization for the configuration of helical piles along with material cost proves to be an out-performed tool in designing helical pile foundation with economic feasibility.

Study on the Bearing Capacity of Helical Pile through Field Load Tests (현장재하시험을 통한 헬리컬파일의 지지력에 관한 연구)

  • Kwon, Gi-Ryeol;Jang, Jeong-Wook;Cho, Song-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.669-675
    • /
    • 2020
  • This research has focused on comparing the capacity predicted by the theoretical formula with the one measured by field load tests to examine characteristics of the bearing capacity of a helical pile. The helical pile is featured by a central shaft with one or more helical-shaped bearing plates. Being established by a small rotary attached to an excavator that applies toque, the helical piles can be readily constructed at narrow sites, especially in an urban area with relatively less noise than the others requiring driving and excavation. Although many cases of the helical pile constructions can be recently found, the bearing capacity of the pile has been limitedly studied. To this end, this contribution analyzes and presents comprehensive results of the ten field loading tests with an application of different parameters depending on joint condition and specification of the helical piles, and types of tests and grouting.

Analysis of Vertical and Horizontal Behavior of Helical Piles in Sands Varying Helix Shapes and Locations (사질토에서의 헬릭스 형상 및 위치에 따른 헬리컬 파일의 수직 및 수평 거동 분석)

  • Bae, Jonghwan;Lee, Junwon;Shin, Sehee;Kim, Dongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.393-400
    • /
    • 2020
  • Axial and lateral behavior of helical piles is generally influenced by number, diameter, helix pitch, and locations of helices. In this study, axial and horizontal behavior of helical piles with three helices was investigated varying helices' locations, diameter, and pitch. Especially, due to the spiral shapes of helices, the effect of lateral load directions at pile heads on their lateral behavior was investigated. Axial load test of small-scale helical pile was conducted in laboratory, and its results were compared with numerical analysis results of the same model for cross check of validity of both results. Furthermore, diverse numerical analyses were performed for different shapes of helical piles. Consequently, it was found that, for the given analysis conditions, the helix diameter was the most influential factor on the horizontal and vertical behavior of helical piles.

Advancement in Design Criteria of Helical Pile (헬리컬 파일 설계식 고도화 연구)

  • Park, Jong-Bae;Park, Yong-Boo;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.87-96
    • /
    • 2021
  • Korea has begun to use the Helical pile prevalent in Europe. Korea hasn't still set up the standard design criteria on Helical pile due to the lack of relevant researches. In this regard, this study carried out static and dynamic load tests on Helical pile and then performed reliability analysis including the previous research data. The results present that Road bridge design standard design criteia for pre-boring pile with regard to Modified Davisson method showed good reliability and consistency because Resistance bias factor of this design criteria approached '1.0' and Design C.O.V. showed 'low' level.

Analysis of Axial Capacity and Constructability of Helical Pile with Inner Cone Penetration (내부 콘 항타를 적용한 헬리컬 파일의 지지력 및 시공성 분석)

  • Lee, Jun-Ho;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, 1/6 small-scale model tests of helical piles were conducted to evaluate their installation time and ultimate capacities. Model sand layers were constructed using sand pluviating method to produce uniform soil relative density. For installation of different helical piles varying locations (vertical center-to-center spacings of 50 mm and 150 mm) of helix plates, two different rotation speeds of 15 rpm and 30 rpm were implemented. Cone penetration equipment was installed within the hallow section of the helical pile to increase ultimate capacity of helical pile and to evaluate soil properties of plugged soils and soils below pile tip after installation of the piles. Based on the test results, the most fasted installation was possible under the condition of "rotation speed of 30 rpm and center-to-center spacing of 50 mm", and the highest ultimate capacity was mobilized under the condition of "rotation speed of 30 rpm and center-to-center spacing of 150 mm with cone penetration implementation."

Estimation of Bearing Capacity according to Improvement of Helical Pile Connection System (헬리컬파일 연결부 개선에 따른 지지력 평가)

  • Lee, Jong-Beom;Jung, Dae-Seok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.347-348
    • /
    • 2017
  • 헬리컬파일은 한 개 이상의 나선형 원판이 고강도 강관 파이프에 부착된 말뚝이다. 기존의 헬리컬파일은 커플러 형태의 연결방식을 사용하였으나, 볼트 구멍과 볼트사이의 유격 및 연결소켓과 강관 사이의 유격등으로 인한 높은 지지력 기대가 힘들었다. 본 연구는 헬리컬파일 연결방식 개선을 위해 기존 커플러형식에서 플랜지 형식을 적용하였고, 정재하시험을 통해 지지력을 비교 분석 하였다. 정재하시험결과 플랜지 형태의 연결방식이 커플러 형태의 연결방식보다 높은 지지력이 발휘되었고 플랜지형태 적용시 상향식그라우팅이 가능하여 품질이 향상되었다. 또한 연결부 유격을 방지 할 수 있었다.

  • PDF

Analysis of Helical Pile Behavior in Sands Varying Helix Pitch Based on Numerical Analysis Results (사질토에 근입된 헬릭스 피치에 따른 헬리컬 파일의 수치해석적 거동분석)

  • Bak, Jongho;Lee, Kicheol;Choi, Byeong-Hyun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.29-40
    • /
    • 2018
  • Oil sands, which are largely distributed in Canada and Venezuela, are a mixture of crude oil and sandy soils. In order to extract crude oil from oil sands, construction of massive oil sand plants is required. Generally, the typically-used foundation types of the oil sand plant are driven piles and cast-in-place piles. Most of the oil sand plants are located in cold and remote regions. Installation of driven piles in frozen or organic surface soils is difficult due to high resistance and installation equipment accessability, while the cast-in-place pile has concrete curing problem due to cold temperature. Helical pile can be installed quickly and easily using rotation with a little help of vertical load. As the installation of helical pile is available using a small and light-weight installation equipment, accessibility of installation equipment is improved. The helical pile has an advantage of easy removal by rotation in reverse direction compared with that of installation. Furthermore, reuse of removed helical piles is possible when the piles are structurally safe. In this study, the behavior of helical piles varying helix pitch was analyzed based on the numerical analysis results. Numerical model was calibrated based on the results of model helical pile tests in laboratory. The ultimate helical pile loads, the displacement of each helix attached to the shaft of the helical pile, and the load sharing ratio of each helix were analyzed.

Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles (헬리컬 파일의 지지력 산정을 위한 양방향 재하시험의 적용성 평가)

  • Lee, Dongseop;Na, Kyunguk;Lee, Wonje;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.77-85
    • /
    • 2014
  • The helical pile has become popular with some constructional advantages because relatively compact equipment is needed for installing helical piles. However, field loading tests for estimating the bearing capacity of helical piles have drawbacks that the required dead load should be as much as the operation load, and reaction piles or anchors are required. In this paper, the bi-directional load test without necessity of reaction piles and loading frames was applied to the helical pile, and the load-settlement curves of the helical piles were measured. The bi-directional load test was performed in two separate stages with the aid of a special hydraulic cylinder whose diameter is equal to that of the pile shaft. In the first stage, the hydraulic cylinder is assembled immediately above the bottom helix plate, and the end bearing capacity of the helical pile is measured. In the second stage, the hydraulic cylinder is assembled above the top helix plate, and the skin friction of the helical pile is measured. The pile loading-test program was carried out for the two different helical piles with the shaft diameter of 89 mm and 114 mm, respectively. However, the configuration of helix plates is identical with three helix plates of 450-, 350-, 200- mm diameter. Results of the bi-directional load test were verified by the conventional static pile loading test. As a result, the bearing capacity estimated by the bi-directional load test is in good agreement with the result of the conventional pile loading test.

Numerical Analysis of Helical Pile Behavior Varying Number and Diameter of Helices (헬릭스 개수 및 직경에 따른 헬리컬 파일 거동의 수치해석적 분석)

  • Bak, Jongho;Lee, Kicheol;Choi, Byeong-Hyun;Kim, Dongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.211-217
    • /
    • 2019
  • Oil extraction from oil sands, a non-traditional crude oil resource, is attracting attention as the oil price fluctuates due to recent economical and political issues. Many oil sands sites are mainly located in the polar regions. For plant construction to extract crude oil from oil sands in harsh environment of the polar regions, fast and simple installation of plant foundation is necessary. However, typically-used conventional foundations such as drilled shafts and driven piles are not suitable to construct under cold temperature and organic surface layers. In this study, helical piles enabling rapid and simple constructions using small rotary equipment without driving or excavation was considered. The helical pile consists of steel shaft and several helices attached to the steel shaft; therefore, the behavior of the helical pile depends on the number and shape of the helices. The effect of the helices' configuration (number and diameter of helices) on helical pile behavior was analyzed based on the numerical analysis results.