침입탐지 시스템은 전산시스템을 보호하는 대표적인 수단으로, 오용탐지와 비정상행위탐지 방법으로 나눌 수 있는데, 다양화되는 침입에 대응하기 위해 비정상행위 탐지기법이 활발히 연구되고 있다. 비 정상행위기반 침임탐지 시스템에서는 정상행위 구축 방법에 따라 다양한 침입탐지율과 오류율을 보인다. 본 논문에서는 비정상행위기반 침입탐지시스템을 구축하였는데, 사용되는 대표적인 기계학습 방법인 동등 매칭(Equality Matching), 다층 퍼셉트론(Multi-Layer Perceptron), 은닉마르코프 모델(Hidden Markov Model)을 구현하고 그 성능을 비교하여 보았다. 실험결과 다층 퍼셉트론과 은닉마르코프모델이 높은 침입 탐지율과 낮은 false-positive 오류율을 내어 정상행위로 사용되는 시스템감사 데이터에 대한 정보의 특성을 잘 반영하여 모델링한다는 것을 알 수 있었다.
본 논문에서는 사용자 시스템이 악성 프로그램에 의해 피해를 입은 후 시그니처나 보안 패치가 나오기 전에 피해를 최소화하기 위한 방법으로 파일 DNA 기반의 행위 패턴 분석을 통한 탐지 기법을 연구하였다. 기존의 네트워크 기반의 패킷 탐지기법과 프로세스 기반 탐지 기법의 단점을 보완하여 제로데이 공격을 방어하고 오탐지를 최소화하기 위해 파일 DNA 기반 탐지기법을 적용하였다. 파일 DNA 기반 탐지기법은 악성코드의 비정상 행위를 네트워크 관련 행위와 프로세스 관련 행위로 나누어 정의하였다. 사용자 시스템에서 작동되는 프로세스의 중요한 행위와 네트워크 행위를 정해진 조건에 의해 검사 및 차단하며, 프로세스 행위, 네트워크 행위들이 조합된 파일 DNA를 기반하여 악성코드의 행위 패턴의 유사도를 분석하여 위험경고 및 차단을 통한 대응 기법을 연구하였다.
특정 기업 및 국가를 대상으로 하는 APT(Advanced Persistent Threat)공격의 경우 특정 시스템을 겨냥하여 제작되기 때문에 기존의 시그니처 기반의 악성코드 탐지 방식으로는 해당 악성코드를 탐지할 수 없다. 따라서 알려지지 않은 악성코드를 탐지할 수 있는 행위 기반의 악성코드 탐지 방식이 최근 이슈화되었다. 본 논문에서는 연구되고 있는 행위 분석 기반의 악성코드 탐지 방식들을 분석함으로써 향후 행위 기반 악성코드 탐지 기술 개발 및 연구에 기여하고자 한다.
CPS(Cyber Physical System)에 대한 사이버 공격이 다양해지고 고도화됨에 따라 시그니쳐에 기반한 악성행위 탐지는 한계가 있어 기계학습 기반의 정상행위 학습을 통한 비정상행위 탐지 기법이 많이 연구되고 있다. 그러나 CPS 보안 연구는 보안상의 이유로 CPS 데이터가 주로 외부에 공개되지 않으며 또한 실제 비정상행위를 가동 중인 CPS에 실험하는 것이 불가능하여 개발 기법의 검증이 어려운 문제가 있다. 이를 해결하기 위해 2015년 SUTD(Singapore University of Technology and Design)의 iTrust 연구소에서 SWaT(Secure Water Treatment) 테스트베드를 구성하고 36가지의 공격을 수행한 데이터셋을 공개하였다. 이후 국 내외에서 SWaT 테스트베드 데이터를 사용하여 다양한 보안 기법을 검증한 연구결과가 발표되고 있으며 CPS 보안에 기여하고 있다. 따라서 본 논문에서는 SWaT 테스트베드 데이터 및 SWaT 테스트베드 데이터에 기반한 비정상행위 탐지 연구를 분석한 내용을 설명하고, 이를 통해 CPS 비정상행위 탐지 설계의 주요 요소를 분석하여 제시하고자 한다.
네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.
프로그램 행위기반 침입탐지 기법은 데몬 프로그램이나 루트 권한으로 실행되는 프로그램이 발생시키는 시스템 호출들을 분석하고 프로그램 행위 프로파일을 구축하여 잠재적인 공격을 효과적으로 탐지한다. 그러나 각 프로그램마다 매우 큰 프로파일이 구축되어야 하는 문제점이 있다. 본 논문은 프로파일의 크기를 줄이기 위해, 프로그램 행위 프로파일링 및 이상행위 탐지에 X$^2$ 거리기반 다변량 분석 기법을 응용하였다. 실험 결과, 프로파일을 비교적 작게 유지하면서 탐지율에서는 의미있는 결과를 보였다.
최근 5G 네트워크의 발전으로 사물인터넷의 활용도가 커지며 시장이 급격히 확대되고 있다. 사물인터넷 기기가 급증하면서 이를 대상으로 하는 위협이 크게 늘며 사물인터넷 기기의 보안이 중요시 되고 있다. 그러나 이러한 사물인터넷 기기는 기존의 ICT 장비와는 다르게 리소스가 제한되어 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안기술로 네트워크 학습을 통해 사물인터넷 기기의 이상행위를 탐지하는 경량화된 인공신경망 기술을 제안한다. 기기 별 혹은 사용자 별 네트워크 행위 패턴을 분석하여 특성 연구를 진행하였으며, 사물인터넷 기기의 정상행위를 수집하고 학습데이터로 활용한다. 이러한 학습데이터를 통해 인공신경망 기반의 오토인코더 알고리즘을 활용하여 이상행위 탐지 모델을 구축하였으며, 파라미터 튜닝을 통해 모델 사이즈, 학습 시간, 복잡도 등을 경량화 하였다. 본 논문에서 제안하는 탐지 모델은 신경망 프루닝 및 양자화를 통해 경량화된 오토인코더 기반 인공신경망을 학습하였으며, 정상 행위 패턴을 벗어나는 이상행위를 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련 연구를 통하여 머신러닝 기술과 이상 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 이상행위 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.
본 논문은 악성 스크립트를 탐지하는 새로운 방법을 제안한다. 정보검색 기법을 이용하여 정상 스크립트들을 기능별로 구분하여 정상 행위를 정의함으로써, 정상 행위에서 벗어나는 경우에 악성이라고 판정한다. 소스 기반의 빠른 검색이 가능하며, 실시간 모니터링을 통한 비정상 스크립트의 탐지가 가능하다. 또한 새로운 악성 스크립트가 생성되는 경우에도 탐지가 가능하다는 장점을 가지고 있다.
본 논문은 SOM과 HMM을 이용하여 시스템 호출 수준에서 순서기반의 비정상행위 탐지 센서를 구현하였다. 그리고, 시스템 호출에서 중요한 정보가 무엇이고 임계값은 어떻게 설정해야하는 지를 분석하였다. 본 논문에서 사용한 SOM의 새로운 필터링 규칙과 축약 규칙은 HMM의 입력 크기를 줄일 수 있었다. 이러한 축약은 HMM기반 비정상행위 탐지의 실시간 처리능력을 보장해 준다. 또한, 비정상행위 수라는 개념을 도입하여 HMM의 탐지결과에 대한 민감성을 둔화시켜서, 사용자가 탐지결과를 쉽게 이해하고 false-positive를 줄이는 효과가 있었다. 그리고, 능동적으로 threshold 값을 조정하여 시스템 상황에 따라 탐지센서가 적응할 수 있도록 하였다.
인터넷의 발달로 많은 정보에 쉽게 접근할 수 있게 되었지만, 이에 따라 악의적인 목적을 가진 프로그램의 침입 경로가 다양해졌다. 그리고 전통적인 시그니처 기반 백신은 변종 및 신종 악성코드의 침입을 탐지하기 어렵기 때문에 많은 사용자들이 피해를 입고 있다. 시그니처로 탐지할 수 없는 악성코드는 분석가가 직접 실행시켜 행위를 분석해 볼 수 있지만, 변종의 경우 대부분의 행위가 유사하여 비효율적이라는 문제점이 있다. 본 논문에서는 변종이 대부분의 행위가 유사하다는 것에 착안하여 기존 악성코드와의 행위 유사성을 이용한 탐지 방법을 제안한다. 제안 방법은 변종들이 공통적으로 가지는 행위 대상과 유사한 행위 대상을 갖는 프로그램을 탐지하는 것이다. 1,000개의 악성코드를 이용해 실험한 결과 변종의 경우 높은 유사도를 보이고, 아닐 경우 낮은 유사도를 보여 행위 유사도로 변종을 탐지할 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.