• 제목/요약/키워드: 행위기반탐지

검색결과 325건 처리시간 0.026초

기계학습 기법에 의한 비정상행위 탐지기반 IDS의 성능 평가 (Performance Evaluation of IDS based on Anomaly Detection Using Machine Learning Techniques)

  • 노영주;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.965-968
    • /
    • 2002
  • 침입탐지 시스템은 전산시스템을 보호하는 대표적인 수단으로, 오용탐지와 비정상행위탐지 방법으로 나눌 수 있는데, 다양화되는 침입에 대응하기 위해 비정상행위 탐지기법이 활발히 연구되고 있다. 비 정상행위기반 침임탐지 시스템에서는 정상행위 구축 방법에 따라 다양한 침입탐지율과 오류율을 보인다. 본 논문에서는 비정상행위기반 침입탐지시스템을 구축하였는데, 사용되는 대표적인 기계학습 방법인 동등 매칭(Equality Matching), 다층 퍼셉트론(Multi-Layer Perceptron), 은닉마르코프 모델(Hidden Markov Model)을 구현하고 그 성능을 비교하여 보았다. 실험결과 다층 퍼셉트론과 은닉마르코프모델이 높은 침입 탐지율과 낮은 false-positive 오류율을 내어 정상행위로 사용되는 시스템감사 데이터에 대한 정보의 특성을 잘 반영하여 모델링한다는 것을 알 수 있었다.

  • PDF

파일 DNA 기반의 변종 악성코드 탐지를 위한 유사도 비교에 관한 연구 (A Study on Similarity Comparison for File DNA-Based Metamorphic Malware Detection)

  • 장은겸;이상준;이중인
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.85-94
    • /
    • 2014
  • 본 논문에서는 사용자 시스템이 악성 프로그램에 의해 피해를 입은 후 시그니처나 보안 패치가 나오기 전에 피해를 최소화하기 위한 방법으로 파일 DNA 기반의 행위 패턴 분석을 통한 탐지 기법을 연구하였다. 기존의 네트워크 기반의 패킷 탐지기법과 프로세스 기반 탐지 기법의 단점을 보완하여 제로데이 공격을 방어하고 오탐지를 최소화하기 위해 파일 DNA 기반 탐지기법을 적용하였다. 파일 DNA 기반 탐지기법은 악성코드의 비정상 행위를 네트워크 관련 행위와 프로세스 관련 행위로 나누어 정의하였다. 사용자 시스템에서 작동되는 프로세스의 중요한 행위와 네트워크 행위를 정해진 조건에 의해 검사 및 차단하며, 프로세스 행위, 네트워크 행위들이 조합된 파일 DNA를 기반하여 악성코드의 행위 패턴의 유사도를 분석하여 위험경고 및 차단을 통한 대응 기법을 연구하였다.

행위 기반 악성코드 탐지 기술에 관한 동향 연구 (A Survey on Behavioral Based Malware Detection Techniques)

  • 김호연;최영현;정태명
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.770-773
    • /
    • 2012
  • 특정 기업 및 국가를 대상으로 하는 APT(Advanced Persistent Threat)공격의 경우 특정 시스템을 겨냥하여 제작되기 때문에 기존의 시그니처 기반의 악성코드 탐지 방식으로는 해당 악성코드를 탐지할 수 없다. 따라서 알려지지 않은 악성코드를 탐지할 수 있는 행위 기반의 악성코드 탐지 방식이 최근 이슈화되었다. 본 논문에서는 연구되고 있는 행위 분석 기반의 악성코드 탐지 방식들을 분석함으로써 향후 행위 기반 악성코드 탐지 기술 개발 및 연구에 기여하고자 한다.

SWaT 테스트베드 데이터 셋 및 비정상행위 탐지 동향

  • 권성문;손태식
    • 정보보호학회지
    • /
    • 제29권2호
    • /
    • pp.29-35
    • /
    • 2019
  • CPS(Cyber Physical System)에 대한 사이버 공격이 다양해지고 고도화됨에 따라 시그니쳐에 기반한 악성행위 탐지는 한계가 있어 기계학습 기반의 정상행위 학습을 통한 비정상행위 탐지 기법이 많이 연구되고 있다. 그러나 CPS 보안 연구는 보안상의 이유로 CPS 데이터가 주로 외부에 공개되지 않으며 또한 실제 비정상행위를 가동 중인 CPS에 실험하는 것이 불가능하여 개발 기법의 검증이 어려운 문제가 있다. 이를 해결하기 위해 2015년 SUTD(Singapore University of Technology and Design)의 iTrust 연구소에서 SWaT(Secure Water Treatment) 테스트베드를 구성하고 36가지의 공격을 수행한 데이터셋을 공개하였다. 이후 국 내외에서 SWaT 테스트베드 데이터를 사용하여 다양한 보안 기법을 검증한 연구결과가 발표되고 있으며 CPS 보안에 기여하고 있다. 따라서 본 논문에서는 SWaT 테스트베드 데이터 및 SWaT 테스트베드 데이터에 기반한 비정상행위 탐지 연구를 분석한 내용을 설명하고, 이를 통해 CPS 비정상행위 탐지 설계의 주요 요소를 분석하여 제시하고자 한다.

네트워크기반 비정상행위 탐지모델 생성을 위한 비감독 학습 알고리즘 비교분석 (Comparative Analysis of Unsupervised Learning Algorithm for Generating Network based Anomaly Behaviors Detection Model)

  • 이효승;심철준;원일용;이창훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.869-872
    • /
    • 2002
  • 네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.

  • PDF

침입탐지를 위한 X2 거리기반 다변량 분석기법을 이용한 프로그램 행위 프로파일링 (Profiling Program Behavior with X2 distance-based Multivariate Analysis for Intrusion Detection)

  • 김정일;김용민;서재현;노봉남
    • 정보처리학회논문지C
    • /
    • 제10C권4호
    • /
    • pp.397-404
    • /
    • 2003
  • 프로그램 행위기반 침입탐지 기법은 데몬 프로그램이나 루트 권한으로 실행되는 프로그램이 발생시키는 시스템 호출들을 분석하고 프로그램 행위 프로파일을 구축하여 잠재적인 공격을 효과적으로 탐지한다. 그러나 각 프로그램마다 매우 큰 프로파일이 구축되어야 하는 문제점이 있다. 본 논문은 프로파일의 크기를 줄이기 위해, 프로그램 행위 프로파일링 및 이상행위 탐지에 X$^2$ 거리기반 다변량 분석 기법을 응용하였다. 실험 결과, 프로파일을 비교적 작게 유지하면서 탐지율에서는 의미있는 결과를 보였다.

사물인터넷 환경의 이상탐지를 위한 경량 인공신경망 기술 연구

  • 오성택;고웅;김미주;이재혁;김홍근;박순태
    • 정보보호학회지
    • /
    • 제29권6호
    • /
    • pp.53-58
    • /
    • 2019
  • 최근 5G 네트워크의 발전으로 사물인터넷의 활용도가 커지며 시장이 급격히 확대되고 있다. 사물인터넷 기기가 급증하면서 이를 대상으로 하는 위협이 크게 늘며 사물인터넷 기기의 보안이 중요시 되고 있다. 그러나 이러한 사물인터넷 기기는 기존의 ICT 장비와는 다르게 리소스가 제한되어 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안기술로 네트워크 학습을 통해 사물인터넷 기기의 이상행위를 탐지하는 경량화된 인공신경망 기술을 제안한다. 기기 별 혹은 사용자 별 네트워크 행위 패턴을 분석하여 특성 연구를 진행하였으며, 사물인터넷 기기의 정상행위를 수집하고 학습데이터로 활용한다. 이러한 학습데이터를 통해 인공신경망 기반의 오토인코더 알고리즘을 활용하여 이상행위 탐지 모델을 구축하였으며, 파라미터 튜닝을 통해 모델 사이즈, 학습 시간, 복잡도 등을 경량화 하였다. 본 논문에서 제안하는 탐지 모델은 신경망 프루닝 및 양자화를 통해 경량화된 오토인코더 기반 인공신경망을 학습하였으며, 정상 행위 패턴을 벗어나는 이상행위를 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련 연구를 통하여 머신러닝 기술과 이상 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 이상행위 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.

정상 스크립트 패턴에 기반한 비정상 스크립트 탐지 (Abnormal Scripts Detection based on Normal Scripts Patterns)

  • 백성규;위규범
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.511-513
    • /
    • 2002
  • 본 논문은 악성 스크립트를 탐지하는 새로운 방법을 제안한다. 정보검색 기법을 이용하여 정상 스크립트들을 기능별로 구분하여 정상 행위를 정의함으로써, 정상 행위에서 벗어나는 경우에 악성이라고 판정한다. 소스 기반의 빠른 검색이 가능하며, 실시간 모니터링을 통한 비정상 스크립트의 탐지가 가능하다. 또한 새로운 악성 스크립트가 생성되는 경우에도 탐지가 가능하다는 장점을 가지고 있다.

  • PDF

순서기반 비정상행위 탐지 센서의 임계치 결정 방법 (The Decision Method of A Threshold in Sequence-based Anomaly Detection Sensor)

  • 김용민;김민수;김홍근;노봉남
    • 정보처리학회논문지C
    • /
    • 제8C권5호
    • /
    • pp.507-516
    • /
    • 2001
  • 본 논문은 SOM과 HMM을 이용하여 시스템 호출 수준에서 순서기반의 비정상행위 탐지 센서를 구현하였다. 그리고, 시스템 호출에서 중요한 정보가 무엇이고 임계값은 어떻게 설정해야하는 지를 분석하였다. 본 논문에서 사용한 SOM의 새로운 필터링 규칙과 축약 규칙은 HMM의 입력 크기를 줄일 수 있었다. 이러한 축약은 HMM기반 비정상행위 탐지의 실시간 처리능력을 보장해 준다. 또한, 비정상행위 수라는 개념을 도입하여 HMM의 탐지결과에 대한 민감성을 둔화시켜서, 사용자가 탐지결과를 쉽게 이해하고 false-positive를 줄이는 효과가 있었다. 그리고, 능동적으로 threshold 값을 조정하여 시스템 상황에 따라 탐지센서가 적응할 수 있도록 하였다.

  • PDF

행위 유사도 기반 변종 악성코드 탐지 방법 (A Malware Variants Detection Method based on Behavior Similarity)

  • 조우진;김형식
    • 스마트미디어저널
    • /
    • 제8권4호
    • /
    • pp.25-32
    • /
    • 2019
  • 인터넷의 발달로 많은 정보에 쉽게 접근할 수 있게 되었지만, 이에 따라 악의적인 목적을 가진 프로그램의 침입 경로가 다양해졌다. 그리고 전통적인 시그니처 기반 백신은 변종 및 신종 악성코드의 침입을 탐지하기 어렵기 때문에 많은 사용자들이 피해를 입고 있다. 시그니처로 탐지할 수 없는 악성코드는 분석가가 직접 실행시켜 행위를 분석해 볼 수 있지만, 변종의 경우 대부분의 행위가 유사하여 비효율적이라는 문제점이 있다. 본 논문에서는 변종이 대부분의 행위가 유사하다는 것에 착안하여 기존 악성코드와의 행위 유사성을 이용한 탐지 방법을 제안한다. 제안 방법은 변종들이 공통적으로 가지는 행위 대상과 유사한 행위 대상을 갖는 프로그램을 탐지하는 것이다. 1,000개의 악성코드를 이용해 실험한 결과 변종의 경우 높은 유사도를 보이고, 아닐 경우 낮은 유사도를 보여 행위 유사도로 변종을 탐지할 수 있음을 보였다.