• Title/Summary/Keyword: 해빈 변화

Search Result 143, Processing Time 0.022 seconds

A Numerical Simulation on the Coastal Cliff Change with Non-Erodible Bottom

  • Kim, Nam-Hyeong;Kang, Hyun-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • 해안단애의 형성과 침식에 의한 해안선의 후퇴를 저지하기 위해 방조벽을 설치하여 해빈의 침식 변화과정에 관한 수치모의를 수행하였다. 평균수위의 상승을 동반하는 폭풍해일이 내습하는 경우 평균수위의 상승이 방조벽의 세굴을 가속화시킨다. 그러므로 본 연구는 사빈 해안에 방조벽을 설치하는 경우 해빈 침식의 거동을 예측하는데 이용할 수 있겠다.

Beach Nourishment Design for Minimum Beach Width Management at Gwangalli Beach (광안리 해수욕장의 최소 해빈폭 관리를 위한 양빈 설계)

  • Bae, Soen-Han;Lee, Jung-Lyul
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.141-143
    • /
    • 2015
  • 본 연구는 해변의 양측에서 퇴적되고 해변 중앙에서 침식이 일어나고 있는 광안리 해수욕장에 최소 해빈폭을 최대로 하는 최적의 양빈 설계를 하고자 실시하였다. 광안리 해수욕장에 3가지 case의 양빈안을 수치 모의 시나리오로 구성하여 OneLine Shoreline Model을 적용하여 해빈폭의 시간적 변화를 모의하였으며, Cross-shore Profile Model을 적용하여 연평균 파고에 따른 전진폭과 최고 파고에 따른 침식폭을 추정하였다.

  • PDF

Analysis on the Long-Term Shoreline Changes for Beaches Near Bangpo Port Using Aerial Imagery (항공사진을 이용한 방포항 인근 해빈의 장기간 해안선 변화 분석)

  • Kim, Baeck-Oon;Yun, Kong-Hyun;Lee, Chang-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.477-486
    • /
    • 2013
  • To analyze tendency of temporal and spatial change of shorelines and to estimate rate of shoreline changes using long-term shoreline change data is very important for the coastal environmental management. In this study, investigation was conducted to estimate the rate of shoreline changes using long-term shoreline change data from the year 1985 to 2009 aerial photographs. In this process aerial triangulation, GPS surveying and digital mapping was done for the estimation of changes. As the results, shorelines of Bangpo and Kkotji Beach retreated at a maximum rate of 0.2 m/yr and 0.8 m/yr, respectively. The shoreline could be changed by various factors. However, it was presumed that coastal erosion has been mainly affected by retaining wall constructed in the late 1990s.

Shoreline Change Model in Haeundae Beach (해운대 해빈의 해안선변형 예측 모형)

  • 박일흠;이종섭
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.50-62
    • /
    • 1989
  • Shoreline change of Haeundae beach was predicted by one-line model considering interaction of seawalls and longshore variation of wave height . Wave deformation was calculated by combined wave refraction-diffraction model . In this shoreline change model, empirical constants and offshore sediment transport rate are treated as calibration parameters, and the calculated results are in good agreement with the observed data.

  • PDF

Numerical Analysis of Beach Erosion Due to Severe Storms (폭풍에 의해 발생하는 해빈침식에 대한 수치해석)

  • 조원철;표순보
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • A numerical model is applied for predicting two-dimensional beach and dune erosion during severe storms. The model uses equation of sediment continuity and dynamic equation, governing the on-offshore sediment transport due to a disequilibrium of wave energy dissipation. And the model also uses sediment transport rate parameter K from dimensional analysis instead of that recommended by Kriebel. During a storm, a beach profile evolves to a form where the depth at the surf zone is related to the distance seaward of the waterline. In general, the erosion in the beach profile is found to be sensitive to equilibrium profile parameter, sediment transport rate parameter, storm surge level and breaking wave height.

  • PDF

Detection and Analysis of Post-Typhoon, Nabi Three-Dimensional Changes in Haeundae Sand Beach Topography using GPS and GIS Technology (GPS·GIS 기법을 활용한 태풍 후 해운대 해빈지형의 3차원 변화 탐지 및 분석)

  • Hong, Hyun-Jung;Choi, Chul-Uong;Jeon, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.82-92
    • /
    • 2006
  • As beaches throughout Korea have suffered great losses of sand due to artificial developments and meteorological phenomena, particularly typhoons, it is necessary to monitor beaches that are prone to erosion continuously, establish and enforce a comprehensive plan to attack coastal erosion with the object of the long-term management. However, debates and temporary measures, not based on accurate coastal zone surveys and analyses, have been established up to now. Therefore, with Haeundae sand beach as a case study, we proposed methods to collect accurate spatial data of the coastline and the sand beach through GPS survey. And we detected and analyzed topographic changes resulting from Typhoon Nabi quantitatively and qualitatively, by using GIS technique. Results showed a mean elevation of 1.95 m, a total area of 53,441 $m^2$, and a total volume of 104,639 $m^3$ after Typhoon Nabi. Mean elevation rose 0.06 m between the pre- and the post-typhoon surveys by a protective shore wall. However, strong winds and north-northeast surges brought by the typhoon caused erosion of the area and the volume, by 3,096 $m^2$ and 2,320 $m^3$. Accurate spatial databases of coastal zones based on integrated GPS GIS techniques and quantitative and qualitative analyses of topographical changes will help Korea develop systematic and effective countermeasures against coastal erosion.

  • PDF

Investigation of Coastal Erosion Status in Geojin Port Area (거진항 일대의 해안 침식 현황 조사 연구)

  • Kim, In-Ho;Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • Coastal erosion and its impact on human activities as well as the economic damage and environmental conservation of coastal area is one of major concern in the national policies. In this study, we conducted physical investigations to evaluate effects of erosion in the Geojin beach, which is located nearby the Geojin Port, for a detecting of shoreline change and beach cross-sectional area. The results showed that significant coastal erosion of the Geojin beach has occurred by the complex resources of natural factor, such as rising sea level, storm surges, high wave, and man-made construction. Especially, due to the sand supplement from Jasan river, the section which is nearby the estuary of Jasan river is maintained as a stable beach, whereas beach erosion of the other site in GW04 section has been increased indeed. Therefore, we suggest that it is need to continuous monitoring using DGPS and various surveying techniques to prevent beach erosion onto the GW04 section.

Seasonal Morphodynamic Changes of Multiple Sand Bars in Sinduri Macrotidal Beach, Taean, Chungnam (충남 태안군 신두리 대조차 해빈에 나타나는 다중사주의 계절별 지형변화 특성)

  • Tae Soo Chang;Young Yun Lee;Hyun Ho Yoon;Kideok Do
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.203-213
    • /
    • 2024
  • This study aimed to investigate the seasonal patterns of multiple bar formation in summer and flattening in winter on the macrotidal Sinduri beach in Taean, and to understand the processes their formation and subsequent flattening. Beach profiling has been conducted regularly over the last four years using a VRS-GPS system. Surface sediment samples were collected seasonally along the transectline, and grain size analyses were performed. Tidal current data were acquired using a TIDOS current observation system during both winter and summer. The Sinduri macrotidal beach consists of two geomorphic units: an upper high-gradient beach face and a lower gentler sloped intertidal zone. High berms and beach cusps did not develop on this beach face. The approximately 400-m-wide intertidal zone comprises distinct 2-5 lines of multiple bars. Mean grain sizes of sand bars range from 2.0 to 2.75 phi, corresponding to fine sands. Mean sizes show shoreward coarsening trend. Regular beach-profiling survey revealed that the summer profile has a multi-barred morphology with a maximum of five bar lines, whereas, the winter profile has a non-barred, flat morphology. The non-barred winter profiles likely result from flattening by scour-and-fill processes during winter. The growth of multiple bars in summer is interpreted to be formed by a break-point mechanism associated with moderate waves and the translation of tide levels, rather than the standing wave hypothesis, which is stationary at high tide. The break-point hypothesis for multi-bars is supported by the presence of the largest bar at mean sea-level, shorter bar spacing toward the shore, irregular bar spacing, strong asymmetry of bars, and the 10-30 m shoreward migration of multi-bars.

Benthic Algal Flora in a Man-made Artificial Beach in the Hwawon Resort Complex, Southwestern Coast of Korea (화원관광단지 인공 해빈의 해조상)

  • Park, Chan Sun;Park, Kyung Yang;Hwang, Eun Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • Qualitative and quantitative algal survey was conducted from March 2010 to December 2010 on a man-made artificial beach in the Hwawon Resort Complex in order to understand seasonal changes of algal flora. The seasonal change of algal vegetation was compared with intact natural habitat near from the experimental sites. Total 15 algal species were found at the artificial beach; 8 Chlorophyta, 3 Phaeophyta and 4 Rhodophyta. And 38 algal species were found at the natural habitat; 7 Chlorophyta, 9 Phaeophyta and 22 Rhodophyta. Dominant algal species at the artificial beach were Ulva compressa, U. intestinalis, U. prolifera, U. pertusa in winter and Urospora penicilliformis, U. intestinalis, U. compress in summer. In natural habitat, dominant algal species were U. pertusa, U. compressa in winter and Sargassum thunbergii, Ishige okamurae in summer. (R+C)/P explaining spatial distribution of seaweeds was 3.7~4.0 (warm-temperature) in the artificial beach and 2.6~3.4 (polar-temperate) in the natural habitat, respectively. The flora of artificial beach could be classified into the filamentous form (64.4%), the sheet form (21.9%), and the coarsely branched form (13.7%). There was significant difference from the two habitats representing dominant species, distributions and ratio of functional-form groups.

Characteristics of Erosion Variation at Haeundae Beach due to Multiple Typhoons (복수의 태풍내습에 의한 해운대 해수욕장 침식변화특성)

  • Kang, Tae-Soon;Lee, Jong-Sup;Kim, Jong-Beom;Kim, Jong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.920-926
    • /
    • 2019
  • In this study, we analyzed the erosion variation of beach area at Haeundae Beach after coastal improvement project using video monitoring system operated by the Coastal Erosion Monitoring (Ministry of Oceans and Fisheries). Haeundae Beach was well maintained and stabilized following large scale nourishment through coastal improvement project despite of seasonal fluctuations. However, multiple typhoons over the last two years caused beach stabilization patterns and seasonal fluctuations to lost equilibrium, resulting in rapid erosion. In particular, the sandy beach was eroded by typhoon Solic and Kongray in 2018 and failed to recover beach area in winter by seasonal fluctuations. And due to multiple typhoons in 2019, the beach area was reduced 9.5 % (12,607 ㎡) year-on-year. According to analyze the observed wave and beach area data in Haeundae, the tendency of erosion and sedimentation was influenced by seasonal incident wave direction for each section(west, center and east part). Therefore, to identify the causes of decreasing seasonal fluctuation characteristics and continuous erosion, hereafter, more precise monitoring of different factors are needed, such as the crest heights of submerged breakwater and its loss of function, and sand leakage to the outside around submerged breakwater.