DOI QR코드

DOI QR Code

Analysis on the Long-Term Shoreline Changes for Beaches Near Bangpo Port Using Aerial Imagery

항공사진을 이용한 방포항 인근 해빈의 장기간 해안선 변화 분석

  • 김백운 (군산대학교 새만금환경연구센터) ;
  • 윤공현 (군산대학교 토목공학과) ;
  • 이창경 (군산대학교 토목공학과)
  • Received : 2013.08.25
  • Accepted : 2013.10.11
  • Published : 2013.10.31

Abstract

To analyze tendency of temporal and spatial change of shorelines and to estimate rate of shoreline changes using long-term shoreline change data is very important for the coastal environmental management. In this study, investigation was conducted to estimate the rate of shoreline changes using long-term shoreline change data from the year 1985 to 2009 aerial photographs. In this process aerial triangulation, GPS surveying and digital mapping was done for the estimation of changes. As the results, shorelines of Bangpo and Kkotji Beach retreated at a maximum rate of 0.2 m/yr and 0.8 m/yr, respectively. The shoreline could be changed by various factors. However, it was presumed that coastal erosion has been mainly affected by retaining wall constructed in the late 1990s.

장기간 해안선 변화 자료의 구축을 통해 해안선의 시 공간적인 변화 양상을 분석하고, 이에 근거하여 해안침식의 향후 경향을 파악하는 일은 연안관리에 매우 중요한 역할을 한다. 본 연구에서는 수치항공사진을 이용하여 방포항 인근 해안지역의 장기간(1985년 ~ 2009년) 해안선 변화 탐지를 위해 항공삼각측량, 지상기준점측량, 수치도화, 그리고 해안선 변화율을 산정하였다. 그 결과 방포해빈과 꽃지해빈의 해안선은 각각 0.2 m/yr와 최대 0.8 m/yr로 침식된 것으로 파악되었다. 또한 등고선 변화 통하여 꽃지 해빈의 북부지역에서 침식현상이 가장 뚜렷하게 나타났으며 표고 1 m 간격의 등고선은 최대 45 m 후퇴하였음을 알 수 있었다. 이러한 변화는 다양하고 복합적인 요인에 의해 발생할 수 있으며 주된 요인은 1990년대 말에 설치된 해변 옹벽이 해안침식을 일으키는 주요 원인으로서 추정되고 있다.

Keywords

References

  1. Ahn, C., K. Kajiwara, R. Tateishi, and H. Yoo, 1992. The generation of a digital elevation model in tidal flat using multitemporal satellite data, Korean Journal of Remote Sensing, 8(2): 131- 145 (in Korean with English abstract). https://doi.org/10.7780/kjrs.1992.8.2.131
  2. Cho, J., D. Lim, and B. Kim, 2001. Observation of Shoreline Change Using an Aerial Photograph in Hampyung Bay, Southwestern Coast of Korea, Journal of The Korean Earth Science Society, 22(4): 317-326 (in Korean with English abstract).
  3. Choi, C. and H. Kim, 2001. The Coastline Change on Gwanganli Beach Using the Digital Aerial Photo, Journal of Korea Water Resources Association, 4(4): 73-85(in Korean with English abstract).
  4. Eom, J., J. Choi, J. Ryu, and J. Won, 2010. Monitoring of Shoreline Change Using Satellite Imagery and Aerial Photograph: For the Jukbyeon, Uljin, Korean Journal of Remote Sensing, 26(5): 571- 580 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.5.571
  5. Horn, D. P., 2002. Mesoscale beach processes. Progress in Physical Geography, 26(2): 271-289. https://doi.org/10.1177/030913250202600217
  6. Jang, S., H. Han, and H. Lee, 2010. Observation of ridge-runnel and ripples in Mongsanpo intertidal flat by satellite SAR imagery, Korean Journal of Remote Sensing, 26(2): 115-122 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.2.115
  7. Kim, B., B. Khim, and S. Lee, 2005. Development of mosaic aerial photographs for shoreline change study in Nakdong Estuary, Ocean and Polar Research, 27(4): 497-507 (in Korean with English abstract). https://doi.org/10.4217/OPR.2005.27.4.497
  8. Kim, B., B. Khim, and S. Lee, 2007. Rate of Shoreline Changes for Barrier Islands in Nakdong Estuary, Journal of Korean Society of Coastal and Ocean Engineers, 19(4): 361-374 (in Korean with English abstract).
  9. Kim, B., K. Yun, and C. Lee, 2013. The Use of Elevation Adjusted Ground Control Points for Aerial Triangulation in Coastal Areas, KSCE Journal of Civil Engineering (accepted).
  10. Kim, J., 2006. Application of High Resolution Satellite Image in Coastline Survey, Dept. of Civil Engr. Graduate School of Industry, Kunsan National University, Ms. Thesis.
  11. Kim, J and D. Jang, 2011. Time-series Analysis of Baramarae Beach in Anmyeondo Using Aerial Photographs and Field Measurement Data, Journal of The Geomophological Association, 18(2): 39-51 (in Korean with English abstract).
  12. Kim, K., J. Ryu, S. Kim, and J. Choi, 2010. Application of SAR data to the study on the characteristics of sedimentary environments in a tidal flat, Korean Journal of Remote Sensing, 26(5): 497-510 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2010.26.5.497
  13. Lee, C., B. Kim, and N. Kim, 2007. Investigation of Shoreline Change by Photogrammetric Method, Journal of The Korean Society for GeoSpatial Information System, 15(2): 1-9 (in Korean with English abstract).
  14. Mills, J. P., S. J. Buckley, and H. L. Mitchell, 2003. Synergistic fusion of GPS and photogrammetrically generated elevation models, Photogrammetric Engineering & Remote Sensing, 69(4): 341-349. https://doi.org/10.14358/PERS.69.4.341
  15. Mills, J. P., S. J. Buckley, H. L. Mitchell, P. J. Clarke, and S. J. Edwards, 2005. A geomatics data integration technique for coastal change monitoring, Earth Surface Processes and Landforms, 30(6):651-664. https://doi.org/10.1002/esp.1165
  16. Moore, L. J., 2000. Shoreline mapping techniques, Journal of Coastal Research, 16(1): 111-124.
  17. Stauble, D. K., 2003. The use of shoreline change mapping in coastal engineering project assessment, Journal of Coastal Research, SI(38): 178-206.
  18. Thieler, E. R., E. A. Himmelstoss, and T. L. Miller, 2005. Digital Shoreline Analysis System (DSAS) version 3.0; An ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2005-1304.
  19. U.S. Army, 1971. Report on the national shoreline study, U.S. Army Corps Engineers, Washington, DC.
  20. Zhang, Y., X. Xiong, X. Shen, and Z. Ji, 2012. Bundle block adjustment of weakly connected aerial imagery, Photogrammetric Engineering & Remote Sensing, 78(9): 983-989. https://doi.org/10.14358/PERS.78.9.983
  21. Zhen Xu, D. Kim and S. H. Kim, 2013. Research of Topography Changes by Artificial Structures and Scattering Mechanism in Yoobu-Do Intertidal Flat Using Remote Sensing Data, Korean Journal of Remote Sensing, 29(1): 57-68 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.1.6