• Title/Summary/Keyword: 항복선 해석

Search Result 41, Processing Time 0.025 seconds

Application limit of Yield Line Analysis on Welded T-joints in Cold-Formed SHS Sections (냉간성형 각형강관 T형 접합부의 항복선해석 전용한계)

  • Kang, Chang Hoon;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.315-324
    • /
    • 2004
  • This study performs a yield line analysis of welded T-joints in cold-formed Square Hollow Sections (SHS) with the branch in axial compression. The existing yield line models proposed by Koto, Packer, Zhao, and CIDECT and the proposed yield line model of the previous study are compared, using the existing test results of welded T-joints in cold-formed SHS. The yield line model suggested in the previous paper, which is based on the simplified yield line analysis, is reviewed to evaluate its application limit on cold-formed SHS T-joints. In the proposed model, the round corner of the cold-formed SHS section and weld size are taken into account. Finally, the validity range of yield line analysis is determined by observing the actual failure modes and comparing the test value with the analysis value, set as ${\beta}^{\prime}{\leq}0.8$ where ${\beta}^{\prime}=0.8$, ${\beta}^{\prime}=b_1^{\prime}/b_0^{\prime}$, $b_1{^{\prime}}=b_1+t_0$ and $b_0{^{\prime}}=b_0-t_0$.

The Strength of Square Steel Tubular Column to H-beam Connections - Focused on the connections with outside-type diaphragm - (각형강관 기둥 - H형강 보의 접합부 내력 평가 - 외측형 다이아프램 접합부를 중심으로 -)

  • Lee, Seong Do;Kim, Pil Jung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.11-20
    • /
    • 2004
  • This paper focused on square steel tubular column to H-beam connections (concrete filled tubular) with an outside-type diaphragm. Based on the yield line theory and the nonlinear static FEM analysis the specification equations were evaluated by comparing them with previous result of the simplified tensile experiment[please check. The yield line theory applied to the mechanical model theory revised by K. Morita, the nonlinear static FEM analysis using abaqus/standard, the ultimate strength equation in the specification equation using the factor for long-time loading, and the yield ratio according to material. The allowable strength in the specification equations applied the safety factors of 2.2 and 2.6 in the cases with and without filled concrete, respectively. Therefore, the evaluation of strength(for the previous result of the simplified tensile experiment in this study) was considered possible through the yield line theory, the nonlinear static FEM analysis, and the specification equations. Likewise, the specification equations were seen to be an underestimate of the previous result of the simplified tensile experiment. The strength and displaced mesh in the FEM analysis approximated the previous result of the simplified tensile experiment.

The Ultimate Load Capacity of Plates by Elastic-Perfectly Plastic Model (탄성-완전소성모델에 의한 평판의 극한내하력 산정)

  • 박진환;정우성;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 1999
  • 선형탄성이론을 기초로 한 구조해석의 경우 사용하중상태에서의 변형과 응력은 만족할 만한 결과를 나타내지만, 항복후의 처짐과 파괴시의 극한하중 산정의 정확한 해석이 불가능하다. 평판의 극한해석시, 상한계 이론을 바탕으로 한 항복선 이론이 널리 사용되고 있으나 이론적으로 평판의 강도를 과대평가하게 된다. 그러므로, 임의의 하중조건과 경계조건에 대한 비선형 거동과 극한내하력을 산정할 수 있는 해석기법이 필요하다. 평판의 정확한 극한하중을 위해 p-Version 유한요소법을 제안하며, p-Version의 해석치를 범용 구조해석 프로그램인 ADINA의 결과와 문헌의 이론치와 비교하였다.

  • PDF

Evaluation of Design Formulae for T-joints on the Branch Plate and Hollow Steel Sections welded connections (지관 플레이트가 주관에 용접된 각형강관 접합부의 설계내력 평가에 관한 연구)

  • Park, Keum Sung;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.581-591
    • /
    • 2005
  • This paper proposes a design formulae that evaluates the design strength of T-joints made of cold-formed square hollow steel sections with longitudinal branch plate. The T-joints had a configuration that a branch member used to longitudinal plate to the main chord in the plane. This study focused on the branch plate T-joints governed by the main chord flange failure mode among the experimental results. Based on the test results of the longitudinal branch plate T-joint in the square hollow sections, the ultimate strength on the T-joints was defined as 1.5 times the load at 1% B the strength of joints that governed the serviceability in control for $16.7{\leq}2\gamma(B/T){\leq}31.3$ and $0.20{\leq}{\beta}(b1/B){\leq}0.75$. Existing yield line models for normal T-joints were investigated to be the main chord flange failure for the branch plate T-joint, and this proposal design formula was based on the theory of the yield line model. Finally, the value of the finite element method compared with the value of the test and theory for the T-joints verified the validity of the design formulae.

Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic (교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2002
  • In a strengthened bridge deck which received increased service loads, failure patterns of bridge deck vary depending on deck thickness, compressive strength of concrete, yielding strength of reinforcement, reinforcement ratio and additional strengthening ratio. General failure pattern that is most commonly reported as punching shear failure after the main rebar yields, followed by yielding of distributing rebar. In this paper, by Proposing a limit to the amount of strengthening material, a brittle failure can be prevented and a ductile failure mode similar to that developed in unstrengthened deck is derived. In order to calculated the limit strengthening ratio, the yield line theory and previously proposed plastic punching shear model have been used

Ultimate Strength of branch-rotated T-joints in Cold-formed Square Hollow Sections - Chord flange failure mode - (지관이 회전된 냉간성형 각형강관 T형 접합부의 최대내력(I) - 주관 플랜지 파괴모드 -)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.657-664
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of the new uniplanar T-joints in cold-formed square hollow sections. In the configuration of the new T-joint, only a branch member is orientated to a chord member at 45 degrees in the plane of the truss. This study focused on the branch-rotated T-joints that were governed by chord flange failure in previous studies. Test results of the T-joint in cold-formed square hollow sections revealed a deformation limit of 3%B for $16.7{\leq}2{\gamma}(=B/T){\leq}33.3$ and $0.27{\leq}{\beta}(=b1/B){\leq}0.6$. The existing strength formulae for traditional T-joint were determined and a new yield-line model for the branch-rotated T-joint proposed. Finally, the strength formula on the yield-line analysis was compared with test results and the application range of the proposed formula recommended.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

The Structural Behavior of CFCT Column to H-Beam Connections With Longitudinal Rib of Column at Joint (종리브로 보강한 콘크리트충전원형강관기둥-H형강보 접합부의 구조적 거동에 관한 연구)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.291-301
    • /
    • 1998
  • This paper is a study on the structural behavior of CFCT(Concrete-Filled Circular Tubular) column to H-beam connections with longitudinal rib. The important parameters are being longitudinal rib or not. variable column thickness(5.8mm. 9.2mm. 12.0mm. 15.0mm) around the joint between CFCT and H-beam and the width of flange to diameter. Test results are summarized for the strength, initial stiffness, failure mode and energy absorption capacities of each specimen. These are compared with the theoretical results(Yield line theory, numerical analysis). Therefore, the purpose of this paper is to investigate the stiffness and the strength of connections to evaluate the structural behavior of the CFCT column to H-beam connections with longitudinal rib.

  • PDF

A Study on the Behavior of Wall-Support Joint of Steel Plate-Concrete Structure (SC(강판-콘크리트)구조 브라켓 접합부 거동에 관한 연구)

  • Kim, Woo Bum;Kim, Kang Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.377-385
    • /
    • 2004
  • An experimental and analytical study on the behavior of the wall-support joint in SC(steel plate-concrete) structure was performed. Nine full-scale specimens were tested with a horizontal monotonic load, all acting in the same plane, causing a uni-axial moment on the SC structure's wall-support beam joint. The main focus is to examine thenonlinear behavior and ultimate strength of the SC wall-support joint. The effects of parameters, such aslocation of support, thickness of the steel plate, and size of support, were studied. The yield strength and ultimate strength of the plate-concrete wall was defined by examining the load-deflection relationship, showing the tension membrane action.

Tensile Behavior of Concrete-Filled Square Steel Tubular Column-Beam Flange Connections with Stiffeners (강관 보강형 충전 각형강관 기둥-보 플랜지 접합부의 인장거동에 관한 실험적 연구)

  • Yoo, Yeong Chan;Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The purpose of this study is to examine the utility of concretefilled steel tubular column to H-beam connections with tubular stiffener. As a preliminary step. a tensile experiment was undertaken to scrutinize characteristics of the structural behavior that take place between beam flanges and column with tubular stiffener. A total of 4 types of experimental settings were developed as tabular stiffeners are made up 9, 18, and 27 mm of thickness and 50 and 80 mm of height respetively Along with the overall load subsequently the degree of displacement and strain were recorded. Based on the yield line theory results of this of this study were evaluated and further critically reviewed the applicability of the strength formula. This study found that collapse mechanism was emerged on the beam flange as reinforcing tabular stiffeners Complementary studies of this sort, including numerical analyses should be undertaken in order to develope specific design critera.

  • PDF