• Title/Summary/Keyword: 합성거더

Search Result 192, Processing Time 0.025 seconds

Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method (LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.737-749
    • /
    • 2007
  • Flexural design of double composite box girder over the interior pier for three-span continuous bridge was performed by the LRFD method. The maximum span length of the continuous bridge ranged from 80m to 120m and the relative ratio of the span length was assumed to be 1:1.25:1. The girder section was designed for the strength limit state and service limit state with additional design check for constructibility. Before the bottom concrete and compression flange showed a complete composite action, the buckling of lower compression flange was checked. The flexural stiffness and flexural resistance characteristics for the section and for the constituent members such as tension flange, compression flange, and web were analyzed for different thicknesses of the bottom concrete on top of the compression flange. The effect of the distribution ratio of steel between the top and bottom flanges was investigated by analyzing ductility behavior and stress distribution through the girder's depth for several different relative area ratios of steel between the top and bottom flanges. It was found that a total amount of 15% of steel can be saved by applying the double composite system compared with that of the conventional composite system.

A Numerical and Experimental Study on Structural Performance of Noncomposite and Composite Eco-Arch Structures subjected to Concentrated Loads (집중하중을 받는 비합성.합성 생태아치구조물의 성능평가를 위한 수치해석 및 모형실험 연구)

  • Kim, Yong-Hee;Park, Jong-Sup;Lee, Young-Ho;Oh, Min-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In this study, noncomposite and composite eco-arch structures with I-beams and precast concrete(PC) decks were investigated. Four finite-element models(a steel-girder model, a steel-girder-and-several-PC-panels model, a three-steel-girder model, and a three-steel-girder-and-several-PC-panels model) using a general finite-element program, ABAQUS, were reviewed to predict the strength of the noncomposite and composite arch structures. Based on the results of the finite- element analysis, the behaviors of the four models were investigated, and deflection and strain gauges for the experimental specimen consisting of three steel girders and several PC panels were set up to obtain the ultimate strength. The ultimate strength of the specimen was estimated to be 1,961kN. The ultimate strength was much larger than the 1,380-kN load calculated using AASHTO LRFD Bridge Design Specifications(2007). The noncomposite and composite arch bridges were found to have enough strength for safety.

Optimal Tension Forces of Multi-step Prestressed Composite Girders Using Commercial Rolled Beams (상용압연 형강을 이용한 콘크리트 합성거더의 다단계 긴장력 최적설계)

  • Shin Yung-Seok;Jung Heung-Shi;Kim Young-Woo;Park Jea-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.115-124
    • /
    • 2006
  • The 1st and 2nd tension forces of the PSSC(Prestressed Steel and Concrete) grider constructed with commercial rolling beams and concrete are optimally designed. The design variables are the 1st and 2nd tension forces due to multi-step prestressing and live load. The objective function is set to the maximum live load. Design conditions are allowable stresses at the top and bottom of slab, beam and infilled concrete due at the several construction stages. A Matlab based optimization program is developed. The results show that the tendon position as well as concrete compression strength have significant influence on the beam strength.

Flexural Performance of Multistage Prestressed and Self-weight Preflex Girder (다단계 자중 프리플렉스 및 프리스트레싱 합성거더의 시공단계에 따른 휨성능 평가)

  • Choi, Byung Ho;Kim, Tae Bong;Park, Sung Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • This paper deals with the flexural performance of a composite girder system designed to readily form a composite section without a formwork and to easily realize multistage preflexing and prestressing. After a 3-Dimensional finite element modeling for construction stage analysis, the parametric numerical analysis was performed to analyse the stress distribution on the composite girder sections and the prestressing effects along with concrete pouring method and strand tensioning method. Based on the stress distribution analysis, a favorable construction stage model has been rationally chosen and then the ultimate flexural strengths were evaluated to conduct a comparative study, which exceed the nominal flexural strength suggested by the current design specification(ASD). It can be concluded that the proposed composite girder and fabrication procedure should have a sufficient structural performance.

An Experimental Study on the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bars (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부의 거동에 관한 실험적 연구)

  • Lee, Sang-Yoon;Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Yang, Sung-Don
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.453-463
    • /
    • 2012
  • Steel-concrete composite rigid-frame bridge is a type of integral bridge having advantages in bridge maintenance and structural efficiency from eliminating expansion joints and bridge supports, the main problems in bridge maintenance. The typical steel-concrete composite rigid-frame bridge has the girder-abutment connection where a part of its steel girder is embedded in abutment for integrity. However, the detail of typical girder-abutment connection is complex and increases the construction cost, especially when a part of steel girder is embedded. Recently, a new type of bridge was proposed to compensate for the disadvantages of complex details and cost increase. The compensation are expected to improve efficiency of construction by simplifying the construction detail of the girder-abutment connection. In this study, a static load test has been carried out to examine the behavior of the girder-abutment connection using real-scale specimens. The results of the test showed that the girder-abutment connection of proposed girder bridge has sufficient flexural capacity and rebars to control concrete crack should be placed on the top of abutment.

Development of a Prestressed Plate Girder Forming Hybrid Sections of Hot-rolled H Beam and High-Strength Steel Plates (H형강과 고강도 강판으로 복합단면을 구성하는 프리스트레스트 플레이트거더의 개발)

  • Kyung, Yong Soo;Ahn, Byung Kuk;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.637-648
    • /
    • 2005
  • Innovative prestressed steel plate girders were presented in this study. Hot-rolled H beams were loaded first, then relatively high-strengthsteel plates were welded on the top and bottom flanges of preloaded H beams. Finally, high prestressed plate (HiPP) girder was manufactured by simply releasing prestresses of rolled beams. To verify prestress distributions induced in this girder, the experimental study was conducted and some guidelines to manufacture these girders effectively were addressed. In addition, methods to determine the allowable bending stress of HiPP girders and to check welding stresses were addressed for design of temporary bridges. The efficiency and effectiveness of the present girder were demonstrated through design examples of temporary bridges adapting the prestress-induced girder or the plate girder of the same section without prestresses. As a result, it has been found to be possible that the span length of HiPP girders for temporary bridges is longer than that of girders without prestresses.

A Study on Fracture Behavior for FRP Composite Girder Filled with Concrete (콘크리트를 충진한 FRP 합성 거더의 파괴 거동에 관한 연구)

  • Kwak, Kae-Hwan;Chung, Sang-Mo;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • This study is about manufacturing and producing girder, which is an essential component of bridge structure, in a composite of FRP + concrete. This has a higher competitive power in price than steel girder. The girder used in this study is made of glass fiber which has a lower elastic modulus than steel and thus has some technical limitations such as excessive deflection compared to steel girder and lack of production facilities in FRP production companies to make a large-section component material. Thus, this study suggested a section of a new module that will allow for applying a large section in order to solve the technical difficulties mentioned above and to secure low stiffness of FRP, developed a new FRP+concrete composite girder that is filled with the appropriate amount of concrete. To identify the structural behavior of this FRP+concrete composite girder, experiments were conducted to measure its flexural strength according to the difference in the strength of confined concrete and the existence of stud. The results of the flexural strength test confirmed the composite effect from confining concrete and the effect of increase in strength proportional to the strength of concrete. In developing FRP+concrete composite girder, NDT study was also conducted to analyze the interface characteristics of concrete and FRP.

Fatigue Analysis of Prestressed Concrete Composite Girder Bridges (프리스트레스트 콘크리트 합성거더 교량의 피로해석)

  • 김지상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.135-144
    • /
    • 1993
  • A fatigue analysis procedure for prestressed concrete composite girder bridges is established, which includes the time-dependent effects of component materials. The procedure can take into account the movement of neutral axis depth as crack develops and give quite good agreement with experimental results available. It is also assured that Korean Standard prestressed concrete composite girder has enough fatigue resistance. The procedure in this paper gives a way to express the fatigue capacity of prestressed concrete beams in the form of S-N curve, which can be utilized under variable amplitude fatigue load.

Behavior of Negative Moment Region of Continuous Double Composite Railway Bridges (이중합성 2거더 연속 철도교의 부모멘트부 거동)

  • Shim, Chang Su;Kim, Hyun Ho;Yun, Kwang Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.339-347
    • /
    • 2006
  • This study proposes a double-composite section to enhance the s serviceability of twin-girder railway bridges, especially in terms of the flexural stiffness of the composite section in negative-moment regions. This paper deals with experiments on continuous twin-girder bridge models with 5m-5m span length with the proposed double-composite action. From results of static tests on the bridge models, several design considerations were investigated including effective width, shear connection and ultimate strength of the double-composite concrete slab showed full shear connection, which verified the suggested empirical equation. From the flexural behavior of the double-composite section, the effective width of the bottom concrete slab can be evaluated as that of the concrete slab under compression. The ultimate flexural strength of the bridge models verified the validity of the rigid plastic analysis of the double-composite section. Design guidelines were suggested based on the test results.

Flexural Resistance and Ductility Ratio of Composite Hybrid I-Girder using HSB High Performance Steel in Positive Bending (HSB 고성능 강재를 적용한 강합성 I-거더 정모멘트에 대한 휨저항강도 및 연성비)

  • Choi, Dong Ho;Lim, Ji Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.205-217
    • /
    • 2014
  • In this study, flexural strength and ductility requirements of composite hybrid steel I-girder with its HSB(high performance steel for bridge) applied to tension flanges are examined in positive bending. In AASHTO LRFD specification, flexural strength and ductility requirements of composite I-girder in positive bending are specified in terms of plastic moment and plastic neutral axis that are derived from plastic behavior of conventional steel. However, plastic zone cannot be defined clearly from the stress-strain behavior of HSB unlike the behavior of conventional steel. Therefore, through idealized stress-strain curves of HSB, the plastic moment of composite hybrid steel I-girder with its HSB applied to tension flanges is defined by assuming the plastic zone of HSB. By using the consequences of numerical analysis regarding arbitrary cross-sections that have various dimensions, ductility requirements and flexural strength of composite hybrid I-girder with its HSB applied to tension flange are proposed.