DOI QR코드

DOI QR Code

Flexural Resistance and Ductility Ratio of Composite Hybrid I-Girder using HSB High Performance Steel in Positive Bending

HSB 고성능 강재를 적용한 강합성 I-거더 정모멘트에 대한 휨저항강도 및 연성비

  • Choi, Dong Ho (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Lim, Ji Hoon (Department of Civil and Environmental Engineering, Hanyang University)
  • 최동호 (한양대학교, 건설환경공학과) ;
  • 임지훈 (한양대학교, 건설환경공학과)
  • Received : 2014.04.11
  • Accepted : 2014.05.22
  • Published : 2014.06.27

Abstract

In this study, flexural strength and ductility requirements of composite hybrid steel I-girder with its HSB(high performance steel for bridge) applied to tension flanges are examined in positive bending. In AASHTO LRFD specification, flexural strength and ductility requirements of composite I-girder in positive bending are specified in terms of plastic moment and plastic neutral axis that are derived from plastic behavior of conventional steel. However, plastic zone cannot be defined clearly from the stress-strain behavior of HSB unlike the behavior of conventional steel. Therefore, through idealized stress-strain curves of HSB, the plastic moment of composite hybrid steel I-girder with its HSB applied to tension flanges is defined by assuming the plastic zone of HSB. By using the consequences of numerical analysis regarding arbitrary cross-sections that have various dimensions, ductility requirements and flexural strength of composite hybrid I-girder with its HSB applied to tension flange are proposed.

본 연구에서는 인장 플랜지에 HSB 고성능 강재를 적용한 강합성 복합단면 I-거더의 정모멘트에 대한 휨저항강도 및 연성 요구조건을 검토하였다. AASHTO LRFD 설계기준에서 강합성 거더의 정모멘트에 대한 공칭 휨저항강도 및 연성 요구조건은 소성모멘트와 소성 중립축을 이용하여 규정하고 있으며, 이때 소성모멘트와 소성중립축은 일반 강재에 대하여 유도된 값이다, 하지만 응력-변형률 거동에서 일반강재와 다르게 HSB 고성능 강재의 소성영역은 명확히 정의될 수 없다. 따라서 고성능 강재의 이상화된 응력-변형률 곡선을 통해 고성능 강재의 소성영역을 가정하여 소성모멘트를 정의하였으며, 다양한 치수를 갖는 임의의 단면에 대하여 수행된 수치 해석의 결과를 통해 인장 플랜지에 HSB 고성능 강재를 적용한 강합성 복합단면 I-거더의 연성 요구조건 및 공칭 휨저항강도 산정식을 제안하였다.

Keywords

References

  1. 한국도로교통협회(2012) 도로교설계기준. Korea Road & Transportation Association (2012) Highway Bridge Design Codes (in Korean).
  2. AASHTO (2012) LRFD Bridge Design Specifications, Sixth Edition, Washington, D.C.
  3. Barth, K.E. and Roberts, N.R. (2009) Flexural Capacity of Compact Composite I-Girders in Positive Bending, Journal of Bridge Engineering, ASCE, Vol.14, No.4, pp.238-246. https://doi.org/10.1061/(ASCE)1084-0702(2009)14:4(238)
  4. Ansourian, P. (1982) Plastic Rotation of Composite Beams, Journal of Structures Division, ASCE, Vol.108, No.3, pp.643-659.
  5. Vasseghi, A. (1989) Strength and Behavior of Composite Plate Girders under Share and Bending moment. Ph.D. Dissertation, The University of Texas-Austin.
  6. Wittry, D.M. (1993) An Analytical Study of The Ductility of Steel-Concrete Composite Sections, MS Thesis, The University of Texas-Austin.
  7. Mans, P., Yakel, A.J., and Azizinamimi, A. (2001) Full-Scale Testing of Composite Plate Girders Constructed using 485-MPa High-Performance Steel, Jounal of Bridge Engineering, ASCE, Vol.6, No.6, pp.598-604. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(598)
  8. AASHTO (2000) LRFD Bridge Design Specifications, Second Edition, Washington, D.C.
  9. AASHTO (2004) LRFD Bridge Design Specifications, Third Edition, Washington, D.C.
  10. 조은영, 신동구(2011) HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도, 한국강구조학회논문집, 한국강구조학회, 제23권, 제3호, pp.385-394. Cho, E.Y. and Shin D.K. (2011) Flexural Strength of Composite HSB Hybrid Girders in Positive Bending, Journal of Korean Society of Steel Construction, KSSC, Vol.23, No.3, pp.385-394 (in Korean).
  11. CEB (1990) CEB-FIP Model Code, Thomas Telford, Laussance, Switzerland.
  12. Shin, D.K., Cho, E.Y., and Kim, K.S. (2013) Ultimate Flexural Strengths of Plate Girders Subjected to Web Local Buckling, International Journal of Steel Structures, KSSC, Vol.13, No.2, pp.291-303. https://doi.org/10.1007/s13296-013-2008-3
  13. 조은영, 신동구(2012) HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면, 한국강구조학회논문집, 한국강구조학회, 제24권, 제2호, pp.217-231. Cho, E.Y. and Shin D.K. (2012) Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Section with Slender Web, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.2, pp.217-231 (in Korean). https://doi.org/10.7781/kjoss.2012.24.2.217
  14. Yoon, S.G. (2013) Nominal Moment Capacity of Hybrid Composite Sections using HSB600 High-Performance Steel, International Journal of Steel Structures, KSSC, Vol.13, No.2, pp.243-252. https://doi.org/10.1007/s13296-013-2004-7
  15. 윤석구(2013) 정모멘트부 강합성거더의 공칭휨강도 재평가, 한국강구조학회논문집, 한국강구조학회, 제25권, 제2호, pp.165-178. Yoon, S.K. (2013) Revaluation of Nominal Flexural Strength of Composite Girders in Positive Bending Region, Journal of Korean Society of Steel Construction, KSSC, Vol.25, No.2, pp.165-178 (in Korean). https://doi.org/10.7781/kjoss.2013.25.2.165

Cited by

  1. HSB600 강재의 변형-경화를 고려한 강합성 I-거더의 정모멘트부 공칭휨강도 vol.29, pp.1, 2017, https://doi.org/10.7781/kjoss.2017.29.1.001
  2. 가상축력을 이용한 좌굴해석 및 HSB800 강재를 적용한 사장교에 대한 적용성 분석 vol.29, pp.1, 2014, https://doi.org/10.7781/kjoss.2017.29.1.013