A Numerical and Experimental Study on Structural Performance of Noncomposite and Composite Eco-Arch Structures subjected to Concentrated Loads

집중하중을 받는 비합성.합성 생태아치구조물의 성능평가를 위한 수치해석 및 모형실험 연구

  • 김용희 (상명대학교 건설시스템공학과) ;
  • 박종섭 (상명대학교 건설시스템공학과) ;
  • 이영호 (한국건설기술연구원) ;
  • 오민수 ((주)청석엔지니어링)
  • Received : 2009.11.30
  • Accepted : 2010.03.26
  • Published : 2010.04.27

Abstract

In this study, noncomposite and composite eco-arch structures with I-beams and precast concrete(PC) decks were investigated. Four finite-element models(a steel-girder model, a steel-girder-and-several-PC-panels model, a three-steel-girder model, and a three-steel-girder-and-several-PC-panels model) using a general finite-element program, ABAQUS, were reviewed to predict the strength of the noncomposite and composite arch structures. Based on the results of the finite- element analysis, the behaviors of the four models were investigated, and deflection and strain gauges for the experimental specimen consisting of three steel girders and several PC panels were set up to obtain the ultimate strength. The ultimate strength of the specimen was estimated to be 1,961kN. The ultimate strength was much larger than the 1,380-kN load calculated using AASHTO LRFD Bridge Design Specifications(2007). The noncomposite and composite arch bridges were found to have enough strength for safety.

본 논문은 I형 강재와 프리캐스트 콘크리트 바닥판으로 구성된 비합성 합성아치 생태교량에 대한 해석 및 실험 연구이다. 범용유한 요소해석 프로그램 ABAQUS(2007)를 사용하여 단위거더, 단위합성거더, 3거더 아치, 3거더 합성아치 등 4종류의 해석모델이 검토되었으며, 해석 결과를 토대로 모델별 거동특성을 분석하고, 3거더 합성아치 모형실험체에 설치될 응력 및 변형률 게이지 위치를 결정하였다. 본 연구의 정적파괴 하중실험에 사용된 실험체는 3개의 I형강 거더와 14개의 PC패널로 구성되어 있다. 모형실험체 정적파괴실험결과로부터 강거더 하부플랜지가 항복응력에 도달하는 시기의 재하하중은 유한요소해석을 통해 얻어진 정적하중과 17%정도의 차이를 나타내고 있으며, 실험체 파괴하중은 1,961kN으로 AASHTO LRFD 교량설계기준 (2007)의 단면 소성모멘트를 이용한 작용가능하중은 1,380kN으로 본 실험체는 충분한 내하력을 나타내고 있다. 해석결과와 실험결과를 토대로 새로운 형식의 비합성 합성아치 교량의 안전성과 강도가 충분히 발휘됨을 확인할 수 있었다.

Keywords

References

  1. 문지호, 윤지용, 김정훈, 이학은(2005) 대칭하중을 받는 포물선 아치 리브의 탄성 면내 좌굴강도, 한국강구조학회 논문집, 한국강구조학회, 제17권, 제2호, pp.161-171.
  2. 박용명, 허택영, 이필구, 노경배(2004) 브레이스트 아치 리브의 면대 좌굴 및 극한강도 정리, 한국강구조학회 논문집, 한국강구조학회, 제16권, 제6호, pp.759-768.
  3. 오민수, 박종섭, 이선호, 정희용(2009) 장대폭원의 강합성 지중 아치 구조개발 및 적용, 한국강구조학회 학술박표대회 발표논문집, 한국강구조학회, pp.203-204.
  4. 임남형, 박남회, 강영종(2003) 연속적으로 브레이스된 아치의 탄성 좌굴, 대한토목학회 논문집, 대한토목학회, 제23권, 제3호, pp.521-526.
  5. American Association of State Highway and Transportation Officials (2007) AASHTO ERFD Bridge Design Specifications, 1th Ed. Washington DC.
  6. ABAQUS Ins. (2007). ABAQUS Standard User's Manual(ver.6.7-2).
  7. Amde, M. Mirminan, A. and Nelsen, D. (2002). Stability Tests of sandwich Composite Elastica Arches, Journal of Structural Engineering. ASCE, Vol. 128 No. 5, pp. 683-686. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:5(683)
  8. Austin, W.J. (1974). In Plane Bendings and Buckling of Arches, Journal of Structural Division, ASCE. Vol. 97, No. 5, pp. 1575-1592.
  9. Austin, W.J. and Ross, T.J. (1976). Elastic Buckling of Arches under Symmetrical Loading. Journal of the Structural Division. ASCE. Vol. 102, pp.1085-1095.
  10. Belytschko, T. and Glaum, L.W. (1979) Application of Higher Order Co-rotational Stretch Theories to Nonlinear Finite Element Analysis, Computer and Structure, Vol. 10, No. 1-2, pp.175-182. https://doi.org/10.1016/0045-7949(79)90085-3
  11. Bradford, M.A., Uy, B., and Pi, Y.L. (2002a) In-plane Elastic Stability of Arches under a Central Concentrated Load, Journal of Engineering Mechanics, ASCE, Vol. 128, No. 7, pp.710-719. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:7(710)
  12. Bradford, M.A., Uy, B., and Pi, Y.L. (2002b) Elastic Flexural-Torsional Buckling of Discretely Restrained Arches, Journal of Structural Engineering, ASCE, Vol. 128, No. 6, pp.719-727. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:6(719)
  13. Bradford, M.A., Wang T., Pi, Y.L., and R. lan Gilbort (2007) In-Plane Stability of Parabolic Arches with Horizontal Spring Supports. I: Theory, Journal of Strucural Engineering, ASCE, Vol. 133, No. 8, pp.1130-1137. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1130)
  14. Elmalich, D. and Rabinovitch O. (2009) Stress Analysis of Monolithc Circular Arches Strengthened with Composite Materials, Journal of Composite. for Construction. ASCE, Vol. 13, No. 5, pp.431-441. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:5(431)
  15. Eurocode (2003) Design of Steel Structures, European Committee for Standardisation.
  16. Gengshu, T., Pi, Y.L., Bradford, M.A., and Francis, T.L. (2008) In-Plane Nonlinear Buckling Analysis of Deep Circular Arches Incorporating Transverse Steresses, Journal of Engineering Mechanics, ASCE, Vol. 134, No. 5, pp.362-373. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:5(362)
  17. Kiyota, S. and Takasu, H. (2004) Shin Kenchiku Doboku Kouzo Manual, Rikogakusha Publishing Co.
  18. Mirmiran, A. and Amde, A.M. (1993) Inelastic Buckling of Prestressed Sandwich or Homogeneous Arches, Journal of Structural Engineering, ASCE, Vol. 119, No. 9, pp.2733-2743. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:9(2733)
  19. Mirmiran, A. and Amde, M. (1995) Effects of Fabrication Process on Prestressed Composite Arches, Journal of Structural Engineering, ASCE, Vol. 121, No. 1, pp.124-131. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:1(124)
  20. Ohura, T. and Kato, M. (1993) Erection and Field Test of Conerete Arch Bridge Applying Composite Tube. Journal of Constructional Engineering and Management, ASCE, Vol. 119, No. 4, pp.666-680. https://doi.org/10.1061/(ASCE)0733-9364(1993)119:4(666)
  21. Pi, Y.L. and Trahair, N.S. (1995) Inelastic Torsion of Steel I-Beam. Journal of Structural Engineering, ASCE, Vol. 121, No. 7, pp.609-620. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(609)
  22. Pi, Y.L. and Trahair, N.S. (1996) In-Plane Inelastic Buckling and Strengths of Steel Arches, Journal of Structural Engineering, ASCE, Vol. 122, No. 7, pp. 731-747.
  23. Pi, Y.L. and Trahair, N.S. (1996) Non-Linear Buckling and Post Buckling of Elastic Arches, Engineering and Structures, Vol. 20, No. 7, pp.571-579.
  24. Schreyer, H. and Masur, E.(1966) Buckling of Shallow Arches, Journal of Engineering Mechanics Division, ASCE, Vol. 90, No. 4, pp.1-19.
  25. Stolarski, H. and Belytschko, T. (1982) Membrane Locking and Reduced Intgration for Curved Element, Journal of Application Mechanics, Vol .49, No. 1, pp.172-176. https://doi.org/10.1115/1.3161961
  26. Sudhakar, R.M. and Kant, T. (2009) On the Flexural Analysis of Sandwich and Composite Arches through an Isoparametric Higher-Order Model, Journal of Engineering Mechanics, ASCE, Vol. 135, No. 7, pp.614-631. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000009
  27. Timosheko, S.P. and Gere, J.M. (1961) Theory of Elastic Stability, 2nd ed. McGraw-Hill Book Co., Inc.
  28. Wang, T., Bradford, M.A., Gilbert. R.I., and Pi, Y.L. (2007) In-Plane Stability of Paraholic Arches with Horizontal Spring Supports. II: Experiments, Journal of Structural Engineering, ASCE, Vol. 133, No. 8, pp.1138-1145. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1138)